Yazar "Guo, Liqiong" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Effects of environmental noise exposure on DNA methylation in the brain and metabolic health(Academic Press Inc Elsevier Science, 2017) Guo, Liqiong; Li, Peng-hui; Li, Hua; Colicino, Elena; Colicino, Silvia; Wen, Yi; Zhang, RuipingEnvironmental noise exposure is associated with adverse effects on human health including hearing loss, heart disease, and changes in stress-related hormone levels. Alteration in DNA methylation in response to environmental exposures is a well-known phenomenon and it is implicated in many human diseases. Understanding how environmental noise exposures affect DNA methylation patterns may help to elucidate the link between noise and adverse effects on health. In this pilot study we examined the effects of environmental noise exposure on DNA methylation of genes related to brain function and investigated whether these changes are related with metabolic health. We exposed four groups of male Wistar rats to moderate intensity noise (70-75 dB with 20-4000 Hz) at night for three days as short-term exposure, and for three weeks as long-term exposure. Noise exposure was limited to 45 dB during the daytime. Control groups were exposed to only 45 dB, day and night. We measured DNA methylation in the Bdnf, Comt, Crhr1, Mc2r, and Snca genes in tissue from four brain regions of the rats (hippocampus, frontal lobe, medulla oblongata, and inferior colliculus). Further, we measured blood pressure and body weight after long-term noise exposure. We found that environmental noise exposure is associated with gene-specific DNA methylation changes in specific regions of the brain. Changes in DNA methylation are significantly associated with changes in body weight (between Bdnf DNA methylation and A body weight: r=0.59, p=0.018; and between LINE-1 ORF DNA methylation and A body weight: =-0.80, p=0.0004). We also observed that noise exposure decreased blood pressure (p=0.038 for SBP, p=0.017 for DBP and p 0.017 for MAP) and decreased body weight (beta=-26 g, p=0.008). In conclusion, environmental noise exposures can induce changes in DNA methylation in the brain, which may be associated with adverse effects upon metabolic health through modulation of response to stress-related hormones.Öğe Exposure to environmental toxicants reduces global N6-methyladenosine RNA methylation and alters expression of RNA methylation modulator genes(Academic Press Inc Elsevier Science, 2019) Cayir, Akin; Barrow, Timothy M.; Guo, Liqiong; Byun, Hyang-MinThe epitranscriptome comprises more than 100 forms of RNA modifications. Of these, N6-methyladenosine (m(6)A) is the most abundant form of RNA methylation, with roles in modulating mRNA transcript processing and regulation. The aims of the study were to examine changes inm(6)A RNA methylation in A549 lung epithelial cells in response to environmental toxicants, and differential gene expression of m(6)A modulator genes ('readers', 'writers' and 'erasers') in human subjects exposed to particulate matter (PM) and in lung cancer tissue using publicly-available microarray datasets. Global m(6)A methylation levels were measured in total RNA after exposure to two carcinogens (PM and sodium arsenite) for 24- and 48-h, and to two endocrine disruptors (bisphenol A and vinclozolin)for 24-h. Global m(6)A methylation level significantly decreased with exposure to > 62 mu g/mlPM, > 1 mu M sodium arsenite, > 1 mu M bisphenol A (BPA), and 0.1 mu M vinclozolin. In an analysis of a published dataset derived from a population study, we observed that m(6)A writers (METTL3 and WTAP), erasers (FTO and ALKBH5) and readers (HNRPC) showed significantly higher expression among participants in the high-PM2.5 exposure group compared to those in the low-exposure control group (all p < 0.05). Further, the m(6)A writer METTL3 shows reduced expression in lung tumors in comparison to normal lung epithelia (p < 0.0001). Our findings reveal that m(6)A RNA methylation can be modified by exposure to environmental toxicants, and exposure to particulate matter is associated with differential expression level of m(6)A RNA methylation modification machinery.