Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Emregul, Kaan C." seçeneğine göre listele

Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    Development of a novel aptasensor using jellyfish collagen as matrix and thrombin detection in blood samples obtained from patients with various neurodisease
    (Elsevier Science Sa, 2016) Derkus, Burak; Arslan, Yavuz Emre; Bayrac, Abdullah Tahir; Kantarcioglu, Ilkim; Emregul, Kaan C.; Emregul, Emel
    In the present study, we describe the isolation and detailed characterization of pepsin-soluble atelocollagen from Rhizostoma pulmo species jellyfish and application towards thrombin apta-sensing. Various analysis methods including infra-red spectroscopy, SDS-PAGE electrophoresis, and amino acid analysis have been applied for the characterization of jellyfish collagen and compared with both rat tail collagen and BSA. When comparing the two collagen types derived from jellyfish and rat tail, jellyfish collagen was observed to contain a relatively high amount of glutamic acid (61 residues/1000 residues) and alanine (63 residues/1000 residues) but low amounts of proline (113 residues/1000 residues). On the other hand, pepsin-soluble jellyfish collagen contained a small quantity of tyrosine indicating the purity of atelo-collagen. Electrochemical impedance spectroscopy is the main analyzing technique of the developed apta-sensor. The proposed apta-sensor has a detection limit of 6.25 nM thrombin. Clinical application were performed with analysis of the thrombin levels in blood and CSF samples obtained from patients with Multiple Sclerosis, Myastenia Gravis, Epilepsy, Parkinson, Polyneuropathy and healthy donors using both the apta-sensor and commercial ELISA kit. The results revealed the proposed system to be a promising candidate for clinical analysis of thrombin. (C) 2016 Elsevier B.V. All rights reserved.
  • [ X ]
    Öğe
    Enhancement of aptamer immobilization using egg shell-derived nano-sized spherical hydroxyapatite for thrombin detection in neuroclinic
    (Elsevier Science Bv, 2016) Derkus, Burak; Arslan, Yavuz Emre; Emregul, Kaan C.; Emregul, Emel
    In the present study, we describe the sonochemical isolation of nano-sized spherical hydroxyapatite (nHA) from egg shell and application towards thrombin aptasensing. In addition to the sonochemical method, two conventional methods present in literature were carried out to perform a comparative study. Various analysis methods including Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Energy Dispersive Analysis of X-Rays (EDAX), and Thermal Gravimetric Analysis (TGA) have been applied for the characterization of nHA and its nanocomposite with marine-derived collagen isolated from Rhizostoma pulmo jellyfish. TEM micrographs revealed the sonochemically synthesized nHA nanoparticles to have a unique porous spherical shape with a diameter of approximately 60-80 nm when compared to hydroxyapatite nanoparticles synthesized using the other two methods which had a typical needle shaped morphology. EDAX, XRD and FTIR results demonstrated that the obtained patterns belonged to hydroxyapatite. Electrochemical impedance spectroscopy (EIS) is the main analyzing technique of the developed thrombin aptasensor. The proposed aptasensor has a detection limit of 0.25 nM thrombin. For clinical application of the developed aptasensor, thrombin levels in blood and cerebrospinal fluid (CSF) samples obtained from patients with Multiple Sclerosis, Myastenia Gravis, Epilepsy, Parkinson, polyneuropathy and healthy donors were analyzed using both the aptasensor and commercial ELISA kit. The results showed that the proposed system is a promising candidate for clinical analysis of thrombin. (C) 2016 Elsevier B.V. All rights reserved.
  • [ X ]
    Öğe
    Fabrication of human hair keratin/jellyfish collagen/eggshell-derived hydroxyapatite osteoinductive biocomposite scaffolds for bone tissue engineering: From waste to regenerative medicine products
    (Elsevier, 2017) Arslan, Yavuz Emre; Arslan, Tugba Sezgin; Derkus, Burak; Emregul, Emel; Emregul, Kaan C.
    In the present study, we aimed at fabricating an osteoinductive biocomposite scaffold using keratin obtained from human hair, jellyfish collagen and eggshell-derived nano-sized spherical hydroxyapatite (nHA) for bone tissue engineering applications. Keratin, collagen and nHA were characterized with the modified Lowry method, free-sulfhydryl groups and hydroxyproline content analysis, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR) and thermal gravimetric analysis (TGA) which confirmed the success of the extraction and/or isolation processes. Human adipose mesenchymal stem cells (hAMSCs) were isolated and the cell surface markers were characterized via flow cytometry analysis in addition to multi lineage differentiation capacity. The undifferentiated hAMSCs were highly positive for CD29, CD44, CD73, CD90 and CD105, but were not seen to express hematopoietic cell surface markers such as CD14, CD34 and CD45. The cells were successfully directed towards osteogenic, chondrogenic and adipogenic lineages in vitro. The microarchitecture of the scaffolds and cell attachment were evaluated using scanning electron microscopy (SEM). The cell viability on the scaffolds was assessed by the MTT assay which revealed no evidence of cytotoxicity. The osteogenic differentiation of hAMSCs on the scaffolds was determined histologically using alizarin red S, osteopontin and osteonectin stainings. Early osteogenic differentiation markers of hAMSCs were significantly expressed on the collagen-keratin-nHA scaffolds. In conclusion, it is believed that collagen-keratin-nHA osteoinductive biocomposite scaffolds have the potential of being used in bone tissue engineering. (C) 2017 Elsevier B.V. All rights reserved.
  • [ X ]
    Öğe
    Sophisticated Biocomposite Scaffolds from Renewable Biomaterials for Bone Tissue Engineering
    (Springer International Publishing Ag, 2019) Arslan, Yavuz Emre; Ozudogru, Eren; Arslan, Tugba Sezgin; Derkus, Burak; Emregul, Emel; Emregul, Kaan C.
    [Anstract Not Available]

| Çanakkale Onsekiz Mart Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Çanakkale Onsekiz Mart Üniversitesi, Çanakkale, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim