Yazar "Eker, Furkan" seçeneğine göre listele
Listeleniyor 1 - 13 / 13
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A Comprehensive Review of Nanoparticles: From Classification to Application and Toxicity(Mdpi, 2024) Eker, Furkan; Duman, Hatice; Akdasci, Emir; Bolat, Ecem; Saritas, Suemeyye; Karav, Sercan; Witkowska, Anna MariaNanoparticles are structures that possess unique properties with high surface area-to-volume ratio. Their small size, up to 100 nm, and potential for surface modifications have enabled their use in a wide range of applications. Various factors influence the properties and applications of NPs, including the synthesis method and physical attributes such as size and shape. Additionally, the materials used in the synthesis of NPs are primary determinants of their application. Based on the chosen material, NPs are generally classified into three categories: organic, inorganic, and carbon-based. These categories include a variety of materials, such as proteins, polymers, metal ions, lipids and derivatives, magnetic minerals, and so on. Each material possesses unique attributes that influence the activity and application of the NPs. Consequently, certain NPs are typically used in particular areas because they possess higher efficiency along with tenable toxicity. Therefore, the classification and the base material in the NP synthesis hold significant importance in both NP research and application. In this paper, we discuss these classifications, exemplify most of the major materials, and categorize them according to their preferred area of application. This review provides an overall review of the materials, including their application, and toxicity.Öğe Antimicrobial Properties of Colostrum and Milk(Mdpi, 2024) Eker, Furkan; Akdasci, Emir; Duman, Hatice; Yalcintas, Yalcin Mert; Canbolat, Ahmet Alperen; Kalkan, Arda Erkan; Karav, SercanThe growing number of antibiotic resistance genes is putting a strain on the ecosystem and harming human health. In addition, consumers have developed a cautious attitude towards chemical preservatives. Colostrum and milk are excellent sources of antibacterial components that help to strengthen the immunity of the offspring and accelerate the maturation of the immune system. It is possible to study these important defenses of milk and colostrum, such as lactoferrin, lysozyme, immunoglobulins, oligosaccharides, etc., as biotherapeutic agents for the prevention and treatment of numerous infections caused by microbes. Each of these components has different mechanisms and interactions in various places. The compound's mechanisms of action determine where the antibacterial activity appears. The activation of the antibacterial activity of milk and colostrum compounds can start in the infant's mouth during lactation and continue in the gastrointestinal regions. These antibacterial properties possess potential for therapeutic uses. In order to discover new perspectives and methods for the treatment of bacterial infections, additional investigations of the mechanisms of action and potential complexes are required.Öğe BCM-7: Opioid-like Peptide with Potential Role in Disease Mechanisms(Mdpi, 2024) Bolat, Ecem; Eker, Furkan; Yilmaz, Selin; Karav, Sercan; Oz, Emel; Brennan, Charles; Proestos, CharalamposBovine milk is an essential supplement due to its rich energy- and nutrient-rich qualities. Caseins constitute the vast majority of the proteins in milk. Among these, beta-casein comprises around 37% of all caseins, and it is an important type of casein with several different variants. The A1 and A2 variants of beta-casein are the most researched genotypes due to the changes in their composition. It is accepted that the A2 variant is ancestral, while a point mutation in the 67th amino acid created the A1 variant. The digestion derived of both A1 and A2 milk is BCM-7. Digestion of A2 milk in the human intestine also forms BCM-9 peptide molecule. The opioid-like characteristics of BCM-7 are highlighted for their potential triggering effect on several diseases. Most research has been focused on gastrointestinal-related diseases; however other metabolic and nervous system-based diseases are also potentially triggered. By manipulating the mechanisms of these diseases, BCM-7 can induce certain situations, such as conformational changes, reduction in protein activity, and the creation of undesired activity in the biological system. Furthermore, the genotype of casein can also play a role in bone health, such as altering fracture rates, and calcium contents can change the characteristics of dietary products. The context between opioid molecules and BCM-7 points to a potential triggering mechanism for the central nervous system and other metabolic diseases discussed.Öğe Exploring the impact of colostrum supplementation on athletes: a comprehensive analysis of clinical trials and diverse properties(Frontiers Media Sa, 2024) Yalcintas, Yalcin Mert; Baydemir, Baris; Duman, Hatice; Eker, Furkan; Bayraktar Bicen, Ayse; Erturk, Melih; Karav, SercanColostrum, an invaluable food produced by mammals during the postnatal period, contains important bioactive components. It is a valuable therapeutic substance that can be used to treat a variety of disorders, in addition to its primary function of providing passive immunity to newborns. Undoubtedly, a strong dedication to intense effort and demanding training schedules is necessary to succeed in today's sports environment. Peak physical fitness, strategic skill development, and mental toughness are highly valued in the environments in which athletes compete. However, the inherent difficulties brought about by athletes' intense schedules are matched with the demanding character of modern sports. The intensity of athletic activity frequently provides little time for sufficient relaxation, nutritional preparation, and overall recovery, which can contribute to mental and physical tiredness. Athletes need to develop all-encompassing strategies to overcome these obstacles. These strategies should prioritize self-care and recovery in addition to maximizing training efficiency. The bioactive components of colostrum bring forth various therapeutic effects against the challenges experienced by athletes; including diarrhea, upper respiratory tract infections, muscle injuries, intestinal disorders, etc. This review examined the different therapeutic effects of the bioactive components of colostrum on athletes, the effect of the use of colostrum as a whole on the performance of athletes, and the clinical research conducted in this field. While the majority of studies report positive effects of colostrum, further research is needed.Öğe Gold Nanoparticles in Nanomedicine: Unique Properties and Therapeutic Potential(Mdpi, 2024) Eker, Furkan; Akdasci, Emir; Duman, Hatice; Bechelany, Mikhael; Karav, SercanGold nanoparticles (NPs) have demonstrated significance in several important fields, including drug delivery and anticancer research, due to their unique properties. Gold NPs possess significant optical characteristics that enhance their application in biosensor development for diagnosis, in photothermal and photodynamic therapies for anticancer treatment, and in targeted drug delivery and bioimaging. The broad surface modification possibilities of gold NPs have been utilized in the delivery of various molecules, including nucleic acids, drugs, and proteins. Moreover, gold NPs possess strong localized surface plasmon resonance (LSPR) properties, facilitating their use in surface-enhanced Raman scattering for precise and efficient biomolecule detection. These optical properties are extensively utilized in anticancer research. Both photothermal and photodynamic therapies show significant results in anticancer treatments using gold NPs. Additionally, the properties of gold NPs demonstrate potential in other biological areas, particularly in antimicrobial activity. In addition to delivering antigens, peptides, and antibiotics to enhance antimicrobial activity, gold NPs can penetrate cell membranes and induce apoptosis through various intracellular mechanisms. Among other types of metal NPs, gold NPs show more tolerable toxicity capacity, supporting their application in wide-ranging areas. Gold NPs hold a special position in nanomaterial research, offering limited toxicity and unique properties. This review aims to address recently highlighted applications and the current status of gold NP research and to discuss their future in nanomedicine.Öğe Gold Nanoparticles: Multifunctional Properties, Synthesis, and Future Prospects(Mdpi, 2024) Duman, Hatice; Akdasci, Emir; Eker, Furkan; Bechelany, Mikhael; Karav, SercanGold nanoparticles (NPs) are among the most commonly employed metal NPs in biological applications, with distinctive physicochemical features. Their extraordinary optical properties, stemming from strong localized surface plasmon resonance (LSPR), contribute to the development of novel approaches in the areas of bioimaging, biosensing, and cancer research, especially for photothermal and photodynamic therapy. The ease of functionalization with various ligands provides a novel approach to the precise delivery of these molecules to targeted areas. Gold NPs' ability to transfer heat and electricity positions them as valuable materials for advancing thermal management and electronic systems. Moreover, their inherent characteristics, such as inertness, give rise to the synthesis of novel antibacterial and antioxidant agents as they provide a biocompatible and low-toxicity approach. Chemical and physical synthesis methods are utilized to produce gold NPs. The pursuit of more ecologically sustainable and economically viable large-scale technologies, such as environmentally benign biological processes referred to as green/biological synthesis, has garnered increasing interest among global researchers. Green synthesis methods are more favorable than other synthesis techniques as they minimize the necessity for hazardous chemicals in the reduction process due to their simplicity, cost-effectiveness, energy efficiency, and biocompatibility. This article discusses the importance of gold NPs, their optical, conductivity, antibacterial, antioxidant, and anticancer properties, synthesis methods, contemporary uses, and biosafety, emphasizing the need to understand toxicology principles and green commercialization strategies.Öğe Lactoferrin as a Versatile Agent in Nanoparticle Applications: From Therapeutics to Agriculture(Mdpi, 2024) Akdasci, Emir; Eker, Furkan; Duman, Hatice; Singh, Priyanka; Bechelany, Mikhael; Karav, SercanNanoparticles (NPs) have emerged as a potent choice for various applications, from drug delivery to agricultural studies, serving as an alternative and promising methodology for future advancements. They have been widely explored in delivery systems, demonstrating immense promise and high efficiency for the delivery of numerous biomolecules such as proteins and anticancer agents, either solely or modified with other compounds to enhance their capabilities. In addition, the utilization of NPs extends to antimicrobial studies, where they are used to develop novel antibacterial, antifungal, and antiviral formulations with advanced characteristics. Lactoferrin (Lf) is a glycoprotein recognized for its significant multifunctional properties, such as antimicrobial, antioxidant, anti-inflammatory, anticancer, and neuroprotective effects. Its activity has a broad distribution in the human body, with Lf receptors present in multiple regions. Current research shows that Lf is utilized in NP technology as a surface material, encapsulated biomolecule, and even as an NP itself. Due to the abundance of Lf receptors in various regions, Lf can be employed as a surface material in NPs for targeted delivery strategies, particularly in crossing the BBB and targeting specific cancers. Furthermore, Lf can be synthesized in an NP structure, positioning it as a strong candidate in future NP-related applications. In this article, we explore the highlighted and underexplored areas of Lf applications in NPs research.Öğe Lactoferrin for COVID-19 prevention, treatment, and recovery(Frontiers Media Sa, 2022) Bolat, Ecem; Eker, Furkan; Kaplan, Merve; Duman, Hatice; Arslan, Aysenur; Saritas, Suemeyye; Sahutoglu, Arif SercanSevere Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), a unique beta-coronavirus, has caused the most serious outbreak of the last century at the global level. SARS-CoV-2 infections were firstly reported in the city of Wuhan in China in 2019 and this new disease was named COVID-19 by World Health Organization (WHO). As this novel disease can easily be transmitted from one individual to another via respiratory droplets, many nations around the world have taken several precautions regarding the reduction in social activities and quarantine for the limitation of the COVID-19 transmission. SARS-CoV-2 is known to cause complications that may include pneumonia, acute respiratory distress syndrome (ARDS), multi-organ failure, septic shock, and death. To prevent and treat COVID-19, some significant studies have been conducted since the outbreak. One of the most noticeable therapeutic approaches is related to a multifunctional protein, lactoferrin. Lactoferrin (Lf) is an 80 kDa cationic glycoprotein that has a great range of benefits from improving the immunity to antiviral effects due to its unique characteristics such as the iron-binding ability. This review summarizes the characteristics of SARS-CoV-2 and the potential applications of Lf for the prevention, treatment, and recovery of COVID-19.Öğe Lactoferrin: neuroprotection against Parkinson's disease and secondary molecule for potential treatment(Frontiers Media Sa, 2023) Eker, Furkan; Bolat, Ecem; Pekdemir, Burcu; Duman, Hatice; Karav, SercanParkinson's disease (PD) is the second-most common neurodegenerative disease and is largely caused by the death of dopaminergic (DA) cells. Dopamine loss occurs in the substantia nigra pars compacta and leads to dysfunctions in motor functions. Death of DA cells can occur with oxidative stress and dysfunction of glial cells caused by Parkinson-related gene mutations. Lactoferrin (Lf) is a multifunctional glycoprotein that is usually known for its presence in milk, but recent research shows that Lf is also found in the brain regions. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a known mitochondrial toxin that disturbs the mitochondrial electron transport chain (ETC) system and increases the rate of reactive oxygen species. Lf's high affinity for metals decreases the required iron for the Fenton reaction, reduces the oxidative damage to DA cells caused by MPTP, and increases their surveillance rate. Several studies also investigated Lf's effect on neurons that are treated with MPTP. The results pointed out that Lf's protective effect can also be observed without the presence of oxidative stress; thus, several potential mechanisms are currently being researched, starting with a potential HSPG-Lf interaction in the cellular membrane of DA cells. The presence of Lf activity in the brain region also showed that lactoferrin initiates receptor-mediated transcytosis in the blood-brain barrier (BBB) with the existence of lactoferrin receptors in the endothelial cells. The existence of Lf receptors both in endothelial cells and DA cells created the idea of using Lf as a secondary molecule in the transport of therapeutic agents across the BBB, especially in nanoparticle development.Öğe Polyphenols: Secondary Metabolites with a Biological Impression(Mdpi, 2024) Bolat, Ecem; Saritas, Sumeyye; Duman, Hatice; Eker, Furkan; Akdasci, Emir; Karav, Sercan; Witkowska, Anna MariaPolyphenols are natural compounds which are plant-based bioactive molecules, and have been the subject of growing interest in recent years. Characterized by multiple varieties, polyphenols are mostly found in fruits and vegetables. Currently, many diseases are waiting for a cure or a solution to reduce their symptoms. However, drug or other chemical strategies have limitations for using a treatment agent or still detection tool of many diseases, and thus researchers still need to investigate preventive or improving treatment. Therefore, it is of interest to elucidate polyphenols, their bioactivity effects, supplementation, and consumption. The disadvantage of polyphenols is that they have a limited bioavailability, although they have multiple beneficial outcomes with their bioactive roles. In this context, several different strategies have been developed to improve bioavailability, particularly liposomal and nanoparticles. As nutrition is one of the most important factors in improving health, the inclusion of plant-based molecules in the daily diet is significant and continues to be enthusiastically researched. Nutrition, which is important for individuals of all ages, is the key to the bioactivity of polyphenols.Öğe Silver Nanoparticles in Therapeutics and Beyond: A Review of Mechanism Insights and Applications(Mdpi, 2024) Eker, Furkan; Duman, Hatice; Akdasci, Emir; Witkowska, Anna Maria; Bechelany, Mikhael; Karav, SercanSilver nanoparticles (NPs) have become highly promising agents in the field of biomedical science, offering wide therapeutic potential due to their unique physicochemical properties. The unique characteristics of silver NPs, such as their higher surface-area-to-volume ratio, make them ideal for a variety of biological applications. They are easily processed thanks to their large surface area, strong surface plasmon resonance (SPR), stable nature, and multifunctionality. With an emphasis on the mechanisms of action, efficacy, and prospective advantages of silver NPs, this review attempts to give a thorough overview of the numerous biological applications of these particles. The utilization of silver NPs in diagnostics, such as bioimaging and biosensing, as well as their functions in therapeutic interventions such as antimicrobial therapies, cancer therapy, diabetes treatment, bone repair, and wound healing, are investigated. The underlying processes by which silver NPs exercise their effects, such as oxidative stress induction, apoptosis, and microbial cell membrane rupture, are explored. Furthermore, toxicological concerns and regulatory issues are discussed, as well as the present difficulties and restrictions related to the application of silver NPs in medicine.Öğe Silver Nanoparticles: A Comprehensive Review of Synthesis Methods and Chemical and Physical Properties(Mdpi, 2024) Duman, Hatice; Eker, Furkan; Akdasci, Emir; Witkowska, Anna Maria; Bechelany, Mikhael; Karav, SercanRecently, silver nanoparticles (NPs) have attracted significant attention for being highly desirable nanomaterials in scientific studies as a result of their extraordinary characteristics. They are widely known as effective antibacterial agents that are capable of targeting a wide range of pathogens. Their distinct optical characteristics, such as their localized surface plasmon resonance, enlarge their utilization, particularly in the fields of biosensing and imaging. Also, the capacity to control their surface charge and modify them using biocompatible substances offers improved durability and specific interactions with biological systems. Due to their exceptional stability and minimal chemical reactivity, silver NPs are highly suitable for a diverse array of biological applications. These NPs are produced through chemical, biological, and physical processes, each of which has distinct advantages and disadvantages. Chemical and physical techniques often encounter issues with complicated purification, reactive substances, and excessive energy usage. However, eco-friendly biological approaches exist, even though they require longer processing times. A key factor affecting the stability, size distribution, and purity of the NPs is the synthesis process selected. This review focuses on how essential it is to choose the appropriate synthesis method in order to optimize the characteristics and use of silver NPs.Öğe The potential of lactoferrin as antiviral and immune-modulating agent in viral infectious diseases(Frontiers Media Sa, 2024) Eker, Furkan; Duman, Hatice; Erturk, Melih; Karav, SercanEmerging infectious diseases are caused by unpredictable viruses with the dangerous potential to trigger global pandemics. These viruses typically initiate infection by utilizing the anionic structures of host cell surface receptors to gain entry. Lactoferrin (Lf) is a multifunctional glycoprotein with multiple properties such as antiviral, anti-inflammatory and antioxidant activities. Due to its cationic structure, Lf naturally interacts with certain host cell receptors, such as heparan sulfate proteoglycans, as well as viral particles and other receptors that are targeted by viruses. Therefore, Lf may interfere with virus-host cell interactions by acting as a receptor competitor for viruses. Herein we summarize studies in which this competition was investigated with SARS-CoV-2, Zika, Dengue, Hepatitis and Influenza viruses in vitro. These studies have demonstrated not only Lf's competitive properties, but also its potential intracellular impact on host cells, such as enhancing cell survival and reducing infection efficiency by inhibiting certain viral enzymes. In addition, the immunomodulatory effect of Lf is highlighted, as it can influence the activity of specific immune cells and regulate cytokine release, thereby enhancing the host's response to viral infections. Collectively, these properties promote the potential of Lf as a promising candidate for research in viral infectious diseases.