Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Dunietz, Barry D." seçeneğine göre listele

Listeleniyor 1 - 9 / 9
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Achieving Predictive Description of Negative Differential Resistance in Molecular Junctions Using a Range-Separated Hybrid Functional
    (Wiley-VCH Verlag, 2021) Bhandari, Srijana; Yamada, Atsushi; Hoskins, Austin; Payne, Jameson; Aksu, Huseyin; Dunietz, Barry D.
    Range-separated hybrid (RSH) functionals have been recently used to overcome the tendency of traditional density functional theory (DFT) calculations to overestimate the conductance of molecular junctions. Non-equilibrium conditions are addressed following non-equilibrium Green's function (NEGF) formulation with RSH functionals to study negative differential resistance (NDR) in molecular junctions of oligo phenylene ethylene derivatives linking gold electrodes. It is shown that the RSH-NEGF calculations indicate NDR onset bias that agrees well with measured trends, associate NDR to orbital localization at the drain contact, and analyze the role of junction asymmetry in NDR. The RSH-NEGF results are also compared with alternative DFT-NEGF combinations to highlight the importance of basing the computational study on a functional that achieves physically significant frontier orbitals. Finally, the effects of thermally accessible molecular fluctuations to enhance the NDR conductance drop are also discussed.
  • [ X ]
    Öğe
    Anisotropic Dielectric Screened Range-Separated Hybrid Density Functional Theory Calculations of Charge Transfer States across an Anthracene-TCNQ Donor-Acceptor Interface
    (Amer Chemical Soc, 2024) Chakravarty, Chandrima; Saller, Maximilian A. C.; Aksu, Huseyin; Dunietz, Barry D.
    A density functional theory framework is developed to study electronic excited states affected by an anisotropic dielectric environment. In particular, an anisotropic dielectric screened range-separated hybrid (SRSH[r]) functional is defined and combined with an anisotropic polarizable continuum model (PCM) implemented through a generalized Poisson equation solver. We develop the SRSH-PCM(r) approach and use it to quantify the effect of anisotropy on an excited charge transfer (CT) state energy. In particular, the dielectric interface effect on the CT state within a donor-acceptor molecular complex of antrancene and tetracyanoquinodimethane is studied. The donor-acceptor complex and the dielectric interface are used to represent the interface between thin films consisting of these materials. We report the effect of such a dielectric interface on the energy of a CT and follow its dependence on the donor-acceptor distance. We also benchmark the anisotropy-affected energy by comparing to homogeneous dielectric calculated energies. Due to the planar interface, the anisotropic energies are expected to to match with those obtained based on isotropic calculations of the larger dielectric constant at large enough distances. The approach is applicable, in general, to more complicated dielectric constant distributions as expected to be found in actual interfaces of such thin films or in other systems, for example, for CT processes within photosystems.
  • [ X ]
    Öğe
    Antioxidative Triplet Excitation Energy Transfer in Bacterial Reaction Center Using a Screened Range Separated Hybrid Functional
    (Amer Chemical Soc, 2024) Begam, Khadiza; Aksu, Huseyin; Dunietz, Barry D.
    Excess energy absorbed by photosystems (PSs) can result in photoinduced oxidative damage. Transfer of such energy within the core pigments of the reaction center in the form of triplet excitation is important in regulating and preserving the functionality of PSs. In the bacterial reaction center (BRC), the special pair (P) is understood to act as the electron donor in a photoinduced charge transfer process, triggering the charge separation process through the photoactive branch A pigments that experience a higher polarizing environment. At this work, triplet excitation energy transfer (TEET) in BRC is studied using a computational perspective to gain insights into the roles of the dielectric environment and interpigment orientations. We find in agreement with experimental observations that TEET proceeds through branch B. The TEET process toward branch B pigment is found to be significantly faster than the hypothetical process proceeding through branch A pigments with ps and ms time scales, respectively. Our calculations find that conformational differences play a major role in this branch asymmetry in TEET, where the dielectric environment asymmetry plays only a secondary role in directing the TEET to proceed through branch B. We also address TEET processes asserting the role of carotenoid as the final triplet energy acceptor and in a mutant form, where the branch pigments adjacent to P are replaced by bacteriopheophytins. The necessary electronic excitation energies and electronic state couplings are calculated by the recently developed polarization-consistent framework combining a screened range-separated hybrid functional and a polarizable continuum mode. The polarization-consistent potential energy surfaces are used to parametrize the quantum mechanical approach, implementing Fermi's golden rule expression of the TEET rate calculations.
  • Yükleniyor...
    Küçük Resim
    Öğe
    CTRAMER: An open-source software package for correlating interfacial charge transfer rate constants with donor/acceptor geometries in organic photovoltaic materials
    (American Institute of Physics Inc., 2021) Tinnin, Jacob; Aksu, Huseyin; Tong, Zhengqing; Zhang, Pengzhi; Geva, Eitan; Dunietz, Barry D.; Sun, Xiang
    In this paper, we present CTRAMER (Charge-Transfer RAtes from Molecular dynamics, Electronic structure, and Rate theory)-an open-source software package for calculating interfacial charge-transfer (CT) rate constants in organic photovoltaic (OPV) materials based on ab initio calculations and molecular dynamics simulations. The software is based on identifying representative donor/acceptor geometries within interfacial structures obtained from molecular dynamics simulation of donor/acceptor blends and calculating the corresponding Fermi's golden rule CT rate constants within the framework of the linearized-semiclassical approximation. While the methods used are well established, the integration of these state-of-the-art tools originating from different disciplines to study photoinduced CT processes with explicit treatment of the environment, in our opinion, makes this package unique and innovative. The software also provides tools for investigating other observables of interest. After outlining the features and implementation details, the usage and performance of the software are demonstrated with results from an example OPV system.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Electronic Spectra of C60Films Using Screened Range Separated Hybrid Functionals
    (American Chemical Society, 2021) Chakravarty, Chandrima; Aksu, Hüseyin; Maiti, Buddhadev; Dunietz, Barry D.
    We study computationally the electronic spectra of C60thin films using the recently developed density functional theory (DFT) framework combining a screened range separated hybrid (SRSH) functional with a polarizable continuum model (PCM). The SRSH-PCM approach achieves excellent correspondence between the frontier orbital’s energy levels and the ionization potential and electron affinity of the molecular systemat the condensed phaseand consequently leads to high quality electronic excitation energies when used in time-dependent DFT calculations. Our calculated excited states reproduce the experimentally main reported spectral peaks at the 3.6-4.6 eV energy range and when addressing excitonic effects also reproduce the red-shifted spectral feature. Notably, we analyze the low-lying peak at 2.7 eV and associate it to an excitonic state.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Heat flow enhancement in a nanoscale plasmonic junction induced by Kondo resonances and electron-phonon coupling
    (Elsevier, 2021) Göker, Ali; Aksu, Hüseyin; Dunietz, Barry D.
    Recently, we showed that plasmon-exciton coupling can increase entropy current through a bridge coupled to plasmonic metal nanoparticles. Here we show that electron-phonon coupling can also be used to control the entropy current in similar systems. Entropy current tends to decrease due to electron-phonon coupling and to exhibit a monotonous decrease upon temperature ramping. However, an anomaly affecting the current where it is enhanced by electron-phonon coupling is indicated at around 42 times the system’s Kondo temperature. We therefore report means to control heat flow by tuning the Kondo resonance through the electron-phonon coupling. We analyze the conditions that bring about these trends due to electron-phonon coupling by employing non-equilibrium Green’s function formulation addressing the entropy current and the derived heat flow.
  • [ X ]
    Öğe
    How Well Does a Solvated Octa-acid Capsule Shield the Embedded Chromophore? A Computational Analysis Based on an Anisotropic Dielectric Continuum Model
    (Amer Chemical Soc, 2020) Aksu, Huseyin; Paul, Suranjan K.; Herbert, John M.; Dunietz, Barry D.
    The optical properties of chromophores embedded in a water-solvated dimer of octa-acid that forms a molecular-shaped capsule are investigated. In particular, we address the anisotropic dielectric environment that appears to blue-shift excitation energies compared to the free aqueous chromophores. Recently we reported that using an effective scalar dielectric constant epsilon approximate to 3 appears to reproduce the measured spectra of the embedded coumarins, suggesting that the capsule provides a significant, albeit not perfect, screening of the aqueous dielectric environment. Here, we report absorption energies using a theoretical treatment that includes continuum solvation affected by an anisotropic dielectric function reflecting the high-dielectric environment outside of the capsule and the low-dielectric region within. We report time-dependent density functional theory calculations using a range-separated functional with the Poisson boundary conditions that model the anisotropic dielectric environment. Our calculations find that the anisotropic environment due to the water-solvated hydrophobic capsule is equivalent to a homogeneous effective dielectric constant of approximate to 3. The calculated values also appear to reproduce measured absorption of the embedded coumarin, where we study the effect of the hydrophobic capsule on the excited state.
  • [ X ]
    Öğe
    On the Interplay between Electronic Structure and Polarizable Force Fields When Calculating Solution-Phase Charge-Transfer Rates
    (Amer Chemical Soc, 2020) Han, Jaebeom; Zhang, Pengzhi; Aksu, Huseyin; Maiti, Buddhadev; Sun, Xiang; Geva, Eitan; Dunietz, Barry D.
    We present a comprehensive analysis of the interplay between the choice of an electronic structure method and the effect of using polarizable force fields vs. nonpolarizable force fields when calculating solution-phase charge-transfer (CT) rates. The analysis is based on an integrative approach that combines inputs from electronic structure calculations and molecular dynamics simulations and is performed in the context of the carotenoid-porphyrin-C-60 molecular triad dissolved in an explicit tetrahydrofuran (THF) liquid solvent. Marcus theory rate constants are calculated for the multiple CT processes that occur in this system based on either polarizable or nonpolarizable force fields, parameterized using density functional theory (DFT) with either the B3LYP or the Baer-Neuhauser-Livshits (BNL) density functionals. We find that the effect of switching from nonpolarizable to polarizable force fields on the CT rates is strongly dependent on the choice of the density functional. More specifically, the rate constants obtained using polarizable and nonpolarizable force fields differ significantly when B3LYP is used, while much smaller changes are observed when BNL is used. It is shown that this behavior can be traced back to the tendency of B3LYP to overstabilize CT states, thereby pushing the underlying electronic transitions to the deep inverted region, where even small changes in the force fields can lead to significant changes in the CT rate constants. Our results demonstrate the importance of combining polarizable force fields with an electronic structure method that can accurately capture the energies of excited CT states when calculating charge-transfer rates.
  • [ X ]
    Öğe
    Photoinduced charge transfer in Zn(II) and Au(III)-ligated symmetric and asymmetric bacteriochlorin dyads: A computational study
    (Amer Inst Physics, 2020) Aksu, Huseyin; Maiti, Buddhadev; Ptaszek, Marcin; Dunietz, Barry D.
    The excited-state properties and photoinduced charge-transfer (CT) kinetics in a series of symmetrical and asymmetrical Zn- and Au-ligated meso-meso-connected bacteriochlorin (BChl) complexes are studied computationally. BChl derivatives, which are excellent near-IR absorbing chromophores, are found to play a central role in bacterial photosynthetic reaction centers but are rarely used in artificial solar energy harvesting systems. The optical properties of chemically linked BChl complexes can be tuned by varying the linking group and involving different ligated metal ions. We investigate charge transfer in BChl dyads that are either directly linked or through a phenylene ring (1,4-phenylene) and which are ligating Zn or Au ions. The directly linked dyads with a nearly perpendicular arrangement of the BChl units bear markedly different properties than phenylene linked dyads. In addition, we find that the dielectric dependence of the intramolecular CT rate is very strong in neutral Zn-ligated dyads, whereas cationic Au-ligated dyads show negligible dielectric dependence of the CT rate. Rate constants of the photo induced CT process are calculated at the semiclassical Marcus level and are compared to fully quantum mechanical Fermi's golden rule based values. The rates are calculated using a screened range separated hybrid functional that offers a consistent framework for addressing environment polarization. We study solvated systems in two solvents of a low and a high scalar dielectric constant.

| Çanakkale Onsekiz Mart Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Çanakkale Onsekiz Mart Üniversitesi, Çanakkale, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim