Yazar "Dundar, M." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Effect of Copper Addition to Aluminium Alloys on Surface Roughness in Terms of Turning Operation(Polish Acad Sciences Inst Physics, 2017) Ozen, F.; Ficici, F.; Dundar, M.; Colak, M.Aluminium alloys have found usage in numerous industries due to some superior properties, such as high strength-to-weight ratios and high oxidation resistance. Aluminum alloys can be strengthened by some techniques. One of them, the most practical one, is precipitation hardening in aluminum alloys. By adding Cu, aluminum gains strength and hardness. In this work the machinability of unalloyed aluminum and aluminum alloyed with 4% and 8% of Cu have been investigated. Machinability assessment was executed in terms of surface roughness during turning operation. Specimens were manufactured by sand casting method, which is a commonly utilized casting operation. In machinability experiments, three different cutting tool materials were employed. Three different cutting speeds and three different feed rates have been used. Effect of these feeds, speeds and cutting tool materials on surface roughness has been studied. In addition, effect of Cu addition to aluminum alloys on surface roughness has been examined.Öğe Investigation of the Delamination Factor of Glass Sphere and Silicon Particle Reinforced (GS-SCR) Hybrid Composite Material(Polish Acad Sciences Inst Physics, 2017) Dundar, M.; Ficici, F.; Ozen, F.; Unal, H.Reinforced polymer composite materials have opened a new era because they can substitute the conventional metallic materials. These materials have found numerous usage areas, especially in aviation, military and space applications due to such advantages as the high tensile strength, high modulus, high corrosion resistance and low density. However, during the assembly of parts from these materials, a huge amount of holes is required. There are problems during machining of reinforced polymer composite materials. Main reason behind these problems is the inhomogeneous microstructure. Some of these problems are burr, pullout, swelling, microcrack, rapid tool wear and delamination. Among the most important of these defects is the delamination damage. Delamination is a severe drilling failure. In this work, three different cutting speeds (15, 20, 25 m/min), three different feed rates (0.05, 0.10, 0.15 mm/rev) and three different cutting tool materials (Carbide, TiN Coated HSS and HSS) have been used. Effect of different feed rates, cutting speeds and tool materials on delamination is studied by drilling of % 10 glass sphere- and % 10 silicon particle-reinforced polypropylene hybrid composite material.