Yazar "Derkuş, Burak" seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A Facile Strategy for Preparing Flexible and Porous Hydrogel-Based Scaffolds from Silk Sericin/Wool Keratin by In Situ Bubble-Forming for Muscle Tissue Engineering Applications(Wiley-V C H Verlag Gmbh, 2024) Demiray, Elif Beyza; Sezgin Arslan, Tuğba; Derkuş, Burak; Arslan, Yavuz EmreIn the present study, it is aimed to fabricate a novel silk sericin (SS)/wool keratin (WK) hydrogel-based scaffolds using an in situ bubble-forming strategy containing an N-(3-dimethylaminopropyl)-N '-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) coupling reaction. During the rapid gelation process, CO2 bubbles are released by activating the carboxyl groups in sericin with EDC and NHS, entrapped within the gel, creating a porous cross-linked structure. With this approach, five different hydrogels (S2K1, S4K2, S2K4, S6K3, and S3K6) are constructed to investigate the impact of varying sericin and keratin ratios. Analyses reveal that more sericin in the proteinaceous mixture reinforced the hydrogel network. Additionally, the hydrogels' pore size distribution, swelling ratio, wettability, and in vitro biodegradation rate, which are crucial for the applications of biomaterials, are evaluated. Moreover, biocompatibility and proangiogenic properties are analyzed using an in-ovo chorioallantoic membrane assay. The findings suggest that the S4K2 hydrogel exhibited the most promising characteristics, featuring an adequately flexible and highly porous structure. The results obtained by in vitro assessments demonstrate the potential of S4K2 hydrogel in muscle tissue engineering. However, further work is necessary to improve hydrogels with an aligned structure to meet the features that can fully replace muscle tissue for volumetric muscle loss regeneration. A novel hydrogel-based bioengineered scaffold with a porous and flexible ultrastructure is fabricated via in situ crosslinking of sericin and keratin. In chorioallantoic membrane analysis, the bioengineered scaffold not only shows angiogenic potential but also promotes the biological behavior of C2C12 muscle cells. These results highlight the potential of the sericin/keratin scaffold for future applications in repairing volumetric muscle tissue loss. imageÖğe Development of plant-based biopolymer coatings for 3D cell culture: boron-silica-enriched quince seed mucilage nanocomposites(Royal Society of Chemistry, 2023) Yılmaz, Hilal Deniz; Cengiz, Uğur; Derkuş, Burak; Arslan, Yavuz EmreSpheroid formation with spontaneous aggregation has captured interest in most cell culture studies due to its easy set-up and more reliable results. However, the economic and technical costs of the advanced systems and commercial ultra-low adhesive platforms have pushed researchers into pursuing alternatives. Nowadays, polymeric coatings, including poly-hydroxyethyl methacrylate and agar/agarose, are the commonly used polymers for non-adhesive plate fabrication, yet the costs and working solvent or heat-dependent preparation procedures maintain the need for the development of novel biomaterials. Here, we propose a greener and more economical approach for producing non-adherent surfaces and spheroid formation. For this, a plant waste-based biopolymer from quince fruit (Cydonia oblonga Miller, from Rosaceae family) seeds and boron-silica precursors were introduced. The unique water-holding capacity of quince seed mucilage (Q) was enriched with silanol and borate groups to form bioactive and hydrophilic nanocomposite overlays for spheroid studies. Moreover, 3D gel plates from the nanocomposite material were fabricated and tested in vitro as a proof-of-concept. The surface properties of coatings and the biochemical and mechanical properties of the nanocomposite materials were evaluated in-depth with techniques, and extra hydrophilic coatings were obtained. Three different cell lines were cultured on these nanocomposite surfaces, and spheroid formation with increased cellular viability was recorded on day 3 with a >200 μm spheroid size. Overall, Q-based nanocomposites are believed to be a fantastic alternative for non-adherent surface fabrication due to their low-cost, easy operation, and intrinsic hydration layer forming capacity with biocompatible nature in vitro.Öğe Supercritical CO2-Mediated Decellularization of Bovine Spinal Cord Meninges: A Comparative Study for Decellularization Performance(Amer Chemical Soc, 2024) Özüdoğru, Eren; Kurt, Tuğce; Derkuş, Burak; Cengiz, Uğur; Arslan, Yavuz EmreThe extracellular matrix (ECM) of spinal meninge tissue closely resembles the wealthy ECM content of the brain and spinal cord. The ECM is typically acquired through the process of decellularizing tissues. Nevertheless, the decellularization process of the brain and spinal cord is challenging due to their high-fat content, in contrast to the spinal meninges. Hence, bovine spinal cord meninges offer a promising source to produce ECM-based scaffolds, thanks to their abundance, accessibility, and ease of decellularization for neural tissue engineering. However, most decellularization techniques involve disruptive chemicals and repetitive rinsing processes, which could lead to drastic modifications in the tissue ultrastructure and a loss of mechanical stability. Over the past decade, supercritical fluid technology has experienced considerable advancements in fabricating biomaterials with its applications spreading out to tissue engineering to tackle the complications mentioned above. Supercritical carbon-dioxide (scCO2)-based decellularization procedures especially offer a significant advantage over classical decellularization techniques, enabling the preservation of extracellular matrix components and structures. In this study, we decellularized the bovine spinal cord meninges by seven different methods. To identify the most effective approach, the decellularized matrices were characterized by dsDNA, collagen, and glycosaminoglycan contents and histological analyses. Moreover, the mechanical properties of the hydrogels produced from the decellularized matrices were evaluated. The novel scCO2-based treatment was completed in a shorter time than the conventional method (3 versus 7 days) while maintaining the structural and mechanical integrity of the tissue. Additionally, all hydrogels derived from scCO2-decellularized matrices demonstrated high cell viability and biocompatibility in a cell culture. The current study suggests a rapid, effective, and detergent-free scCO2-assisting decellularization protocol for clinical tissue engineering applications.Öğe Unveiling Bone and Dental Regeneration Potential of Quince Seed Mucilage-Nanohydroxyapatite Scaffolds in Rabbit Mandibles(Wiley, 2025) Çetin Genç, Çiğdem; Yılmaz-Dağdeviren, Hilal Deniz; Deniz, Yeşim; Derkuş, Burak; Değirmenci, Alpin; Arslan, Yavuz EmreDonor-side morbidity of autografting for maxillofacial region defect regeneration has directed attention to bioengineered scaffolds. Composite scaffolds that mimic the bone extracellular matrix (ECM) are the potential candidates for defect reconstruction. Herein, a plant-based regenerative hydrogel, quince seed mucilage (QSM), was enriched with the nanohydroxyapatite (nHAp) particles to construct composite scaffolds (QSM/nHAp). The emerging scaffold is able to induce cellular spheroid formation and regenerate the critical-sized bilateral mandibular defects in rabbits. The macroscopic observations, histochemical (HC) and immunohistochemical (IHC) stainings, mu-computer tomography (CT) scanning, quantitative real time-polymerase chain reaction (qRT-PCR) analyses, and scanning electron microscopy (SEM) imaging revealed that all QSM/nHAp scaffolds were swelled with host blood, filled the whole cavity, and sustained cellular infiltration without adverse reactions. The gradual biodegradation profile of the scaffolds improved bone regeneration by releasing nHAp particles from the scaffold. Strikingly, co-development of dental and bone regeneration was observed for all QSM/nHAp groups beginning after day 21. Moreover, QSM/nHAp scaffolds induced expression (> 2-fold) of bone and dental-related gene and protein expressions at the grafted area and sustained a proper platform for maxillofacial remodeling. Therefore, we strongly believe that such biocompatible plant-based constructs, compared with conventional medical devices used in maxillofacial surgery, could support and induce simultaneous bone and dental regeneration due to the intrinsic dynamics of the material.