Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Cetin, Ece Unal" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    Advancing ICU mortality prediction in community-
    (Assoc Basic Medical Sci Federation Bosnia & Herzegovina Sarajevo, 2025) Cetin, Ece Unal; Kurtkulagi, Ozge; Kamis, Fatih; Das, Murat; Simsek, Esen; Cetin, Adil Ugur; Beyazit, Yavuz
    Community-acquired pneumonia (CAP) is a leading cause of ICU admissions, with significant morbidity and mortality. Traditional risk stratification tools such as CURB-65, the Pneumonia Severity Index (PSI), and CT severity scores (CT-SS) are widely used for prognosis but could be improved by incorporating novel biomarkers. This retrospective study evaluated the fibrinogen-to-albumin ratio (FAR) as an additional predictor of 30-day mortality in ICU patients with CAP. A total of 158 CAP patients admitted to a tertiary care ICU were included. Baseline data encompassed demographic, clinical, laboratory, and radiological parameters, including FAR, CURB-65, PSI, and CT-SS. Logistic regression and ROC curve analyses were conducted to assess mortality predictors. The 30-day mortality rate was 70.88% (112/158). Higher FAR, PSI, CURB-65, CT-SS, and lactate levels were independently associated with increased mortality (p < 0.05). FAR demonstrated strong discriminatory power (AUROC: 0.704) and significantly improved the predictive accuracy of established models. Adding FAR to PSI increased the area under the receiver operating characteristic (AUROC) from 0.705 to 0.791 (p = 0.009), while combining FAR, CT-SS, and PSI yielded the highest predictive accuracy (AUROC: 0.844, p = 0.032). These findings suggest that FAR, which reflects both inflammation and nutritional status, complements traditional risk assessment tools by providing a dynamic perspective. Integrating FAR into existing models enhances the identification of high-risk patients, enabling timely interventions and more efficient resource allocation in the ICU.

| Çanakkale Onsekiz Mart Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Çanakkale Onsekiz Mart Üniversitesi, Çanakkale, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim