Yazar "Aytürk, Nilüfer" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Efficacy of one-hour negative pressure wound therapy and magnetic field energy in wound healing(MA Healthcare Ltd, 2024) Özer, Aysel Y.; Keskin, Alknur; Kelestemur, Taha; Ersavas, Cenk; Günal, Mehmet Y.; Aytürk, NilüferObjective: Wound healing is an important aspect of health but needs further research to identify the effects and interactions of different treatment approaches on healing. The aims of this study were to investigate the effectiveness of one-hour negative pressure wound therapy (NPWT) and compare histological differences between one-hour NPWT and magnetic field energy (MFE) in rats on early-stage wound healing, wound size and angiogenesis. Method: Standardised wounds were created on Wistar rats that were allocated and divided into NPWT, MFE and control groups. Both treatments were applied for 1 hour/day for 10 days. Wound size, histological changes and wound area blood flow were assessed. Results: The wound size of all groups was similar on days 0, 2 and 10. The MFE group's wound size was smaller than the NPWT group on days 4, 6 and 8 (p<0.05). Development of the granulation tissue in both the one-hour NPWT and MFE groups was greater than in the control group. Additionally, the inflammatory phase was shorter, and wounds entered the proliferative stage faster in the MFE group than both of the other groups. Conclusion: Treatment with MFE may be more effective in terms of early stage wound closure and angiogenesis. On the other hand, the NPWT group's wound area blood flow was significantly greater than the other two groups. MFE is superior to one-hour NPWT in terms of wound area and angiogenesis. Furthermore, it is worthwhile to note that one-hour NPWT increases bloodflow in the wound area, which stimulates healing. Keywords: angiogenesis; magnetic field; negative pressure wound therapy; wound; wound care; wound dressing; wound healing.Öğe The Potential Therapeutic Effects of Agmatine, Methylprednisolone, and Rapamycin on Experimental Spinal Cord Injury(Royan Institute (ACECR), 2021) Fırat, Tülin; Kukner, Aysel; Aytürk, Nilüfer; Gezici, Ali Rıza; Serin, Erdinç; Özoğul, Candan; Tore, FatmaObjective: In spinal cord injury (SCI), the primary mechanical damage leads to a neuroinflammatory response and the secondary neuronal injury occurs in response to the release of reactive oxygen species (ROS). In addition to the suppression of inflammation, autophagy plays a significant role in the survival of neurons during secondary SCI. The present study aimed to examine the anti-inflammatory and autophagic effects of agmatine and rapamycin in SCI and to compare the results with methylprednisolone (MP) used in the clinic. Materials and Methods: In this animal-based experimental study, thirty adult male Sprague-Dawley rats were randomly divided into five groups as sham-control, injury, injury+MP, injury+rapamycin, injury+agmatine groups. SCI was induced by compressing the T7-8-9 segments of the spinal cord, using an aneurysm clip for one minute, and then rats were treated daily for 7 days. Seven days post-treatment, damaged spinal cord tissues of sacrificed rats were collected for microscopic and biochemical examinations using histopathologic and transmission electron microscope (TEM) scores. Malondialdehyde (MDA) and glutathione peroxidase (GPx) levels were spectrophotometrically measured. Results: The results of this study showed that the damaged area was smaller in the rapamycin group when compared to the MP group. Many autophagic vacuoles and macrophages were observed in the rapamycin group. Degeneration of axon, myelin, and wide edema was observed in SCI by electron microscopic observations. Fragmented myelin lamellae and contracted axons were also noted. While MDA and GPx levels were increased in the injury group, MDA levels were significantly decreased in the agmatine and MP groups, and GPx levels were decreased in the rapamycin group. Conclusion: The results of our study confirmed that rapamycin and agmatine can be an effective treatment for secondary injury of SCI.