Yazar "Atalay, Hazal Nazlican" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Selagibenzophenone B and Its Derivatives: SelB-1, a Dual Topoisomerase I/II Inhibitor Identified through In Vitro and In Silico Analyses(Amer Chemical Soc, 2024) Donmez, Serhat; Lapinskaite, Ringaile; Atalay, Hazal Nazlican; Tokay, Esra; Kockar, Feray; Rycek, Lukas; Ozbil, MehmetThe development of multitargeted drugs represents an innovative approach to cancer treatment, aiming to enhance drug effectiveness while minimizing side effects. Herein, we sought to elucidate the inhibitory effect of selagibenzophenone B derivatives on the survival of cancer cells and dual topoisomerase I/II enzyme activity. Results demonstrated that among the compounds, SelB-1 selectively inhibited the proliferation and migration of prostate cancer cells while exhibiting minimal effects on healthy cells. Furthermore, SelB-1 showed a dual inhibitory effect on topoisomerases. Computational analyses mirrored the results from enzyme inhibition assays, demonstrating the compound's strong binding affinity to the catalytic sites of the topoisomerases. To our surprise, SelB-1 did not induce apoptosis in prostate cancer cells; instead, it induced autophagic gene expression and lipid peroxidation while reducing GSH levels, which might be associated with ferroptotic death mechanisms. To summarize, the findings suggest that SelB-1 possesses the potential to serve as a dual topoisomerase inhibitor and can be further developed as a promising candidate for prostate cancer treatment.Öğe Synthesis of new imine-/amine-bearing imidazo[1,2-a]pyrimidine derivatives and screening of their cytotoxic activity(Tubitak Scientific & Technological Research Council Turkey, 2023) Gungor, Tugba; Atalay, Hazal Nazlican; Yilmaz, Yakup Berkay; Tumer, Tugba Boyunegmez; Ay, MehmetImidazo[1,2-a]pyrimidine derivatives bearing imine groups (3a-e) were successfully synthesized in moderate to good yields using microwave-assisted heating. Corresponding amine derivatives (4a-e) were also obtained by the reduction reaction of the imine derivatives (3a-e). All synthesized products were characterized by FT-IR,1H NMR, 13C NMR, and LC-MS spectroscopic techniques. In silico ADMET, Lipinski, and drug-likeness studies of the compounds were conducted and all were found to be suitable drug candidates. The cytotoxicity of the potential drug molecules was screened against the breast cancer cell lines MCF-7 and MDA-MB-231 and the healthy model HUVEC by the sulforhodamine B method. According to the antiproliferative studies, compounds 3d and 4d showed remarkable inhibition of MCF-7 cells with IC50 values of 43.4 and 39.0 mu M and of MDA-MB-231 cells with IC50 values of 35.9 and 35.1 mu M, respectively. In particular, compound 3d selectively inhibited the proliferation of MCF-7 1.6-fold and MDA-MB-231 2.0-fold relative to healthy cells. Moreover, the apoptotic mechanism studies indicated that compound 4d induced apoptosis by moderately increasing the ratio of Bax/Bcl-2 genes. Imidazo[1,2-a]pyrimidine derivative 3d, a promising cytotoxic agent, may be helpful in the discovery of new and more efficient anticancer agents for breast cancer treatment.Öğe Synthesis, in silico and bio-evaluation studies of new isothiocyanate derivatives with respect to COX inhibition and H2S release profiles(Royal Soc Chemistry, 2024) Yilmaz, Yakup Berkay; Gungor, Tugba; Donmez, Serhat; Atalay, Hazal Nazlican; Siyah, Pinar; Durdagi, Serdar; Ay, MehmetThe development of H2S-donating derivatives of non-steroidal anti-inflammatory drugs (NSAIDs) is considered important to reduce or overcome their gastrointestinal side effects. Sulforaphane, one of the most extensively studied isothiocyanates (ITCs), effectively releases H2S at a slow rate. Thus, we rationally designed, synthesized, and characterized new ITC derivatives (I1-3 and I1a-e) inspired by the natural compound sulforaphane. The anti-inflammatory properties of these compounds were evaluated by their inhibitory activities against cyclooxygenase targets COX-1 and COX-2. Additionally, the cytotoxicity of the compounds was tested using the MTT assay on LPS-induced RAW 264.7 cells, revealing no cytotoxic effects at low doses. Notably, compounds I1 and fluorine-containing ester derivative I1c emerged as the most potent and selective COX-2 inhibitors, with selectivity indexes of 2611.5 and 2582.4, respectively. The H2S-releasing capacities of ITC derivatives were investigated and compared with that of sulforaphane, showing that while compounds I1-3 exhibit slow and similar H2S release to sulforaphane, the release from compounds I1a-e was not as pronounced as that of the standard. Physics-based molecular modeling studies including molecular docking and molecular dynamics (MD) simulations, binding free energy calculations and absorption, distribution, metabolism, and excretion (ADME) analyses were also conducted. MD simulations analysis underscored the crucial amino acids such as Tyr385, Trp387, Phe518, Val523, and Ser530 in the interactions between I1c hit compound and COX-2. The combined in silico and in vitro findings suggest that compounds I1 and I1c are promising NSAID candidates against selective COX-2 inhibition.