Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Alber, Renate" seçeneğine göre listele

Listeleniyor 1 - 5 / 5
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    Are cadmium, lead and mercury concentrations in mosses across Europe primarily determined by atmospheric deposition of these metals?
    (Springer Heidelberg, 2010) Schroeder, Winfried; Holy, Marcel; Pesch, Roland; Harmens, Harry; Ilyin, Ilia; Steinnes, Eiliv; Alber, Renate
    This study aimed at investigating correlations between heavy metal concentrations in mosses and modelled deposition values as well as other site-specific and regional characteristics to determine which factors primarily affect cadmium, lead and mercury concentrations in mosses. The resulting relationships could potentially be used to enhance the spatial resolution of heavy metal deposition maps across Europe. Modelled heavy metal deposition data and data on the concentration of heavy metals in naturally growing mosses were integrated into a geographic information system and analysed by means of bivariate rank correlation analysis and multivariate decision trees. Modelled deposition data were validated annually with deposition measurements at up to 63 EMEP measurement stations within the European Monitoring and Evaluation Programme (EMEP), and mosses were collected at up to 7,000 sites at 5-year intervals between 1990 and 2005. Moderate to high correlations were found between cadmium and lead concentrations in mosses and modelled atmospheric deposition of these metals: Spearman rank correlation coefficients were between 0.62 and 0.67, and 0.67 and 0.73 for cadmium and lead, respectively (p < 0.001). Multivariate decision tree analyses showed that cadmium and lead concentrations in mosses were primarily determined by the atmospheric deposition of these metals, followed by emissions of the metals. Low to very low correlations were observed between mercury concentrations in mosses and modelled atmospheric deposition of mercury. According to the multivariate analyses, spatial variations of the mercury concentration in mosses was primarily associated with the sampled moss species and not with the modelled deposition, but regional differences in the atmospheric chemistry of mercury and corresponding interactions with the moss may also be involved. At least for cadmium and lead, concentrations in mosses are a valuable tool in determining and mapping the spatial variation in atmospheric deposition across Europe at a high spatial resolution. For mercury, more studies are needed to elucidate interactions of different chemical species with the moss.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Corrigendum to “Spatial distribution and isotopic signatures of N and C in mosses across Europe” [Sci. Total Environ. 958 (2025) 178043](S0048969724082007)(10.1016/j.scitotenv.2024.178043)
    (Elsevier B.V., 2025) Izquieta-Rojano, Sheila; Morera-Gómez, Yasser; Elustondo, David; Lasheras, Esther; Santamaría, Carolina; Torrens-Baile, Julen; Alber, Renate; Coşkun, Mahmut; Coşkun, Münevver
    The authors regret that the printed version of the above article contained two errors in the author list. The correct and final version of the author list and their corresponding affiliations follows. The added authors are Winfried Schröder and Harald G. Zechmeister. These individuals provided both samples and data from previously analyzed samples, and contributed to the initial manuscript draft. The authors would like to sincerely apologize for any inconvenience caused and greatly appreciate the understanding of the two authors mistakenly included and the two authors initially omitted. Sheila Izquieta-Rojanoa, Yasser Morera-Gómeza, David Elustondoa, Esther Lasherasa, Carolina Santamaríaa, Julen Torrens-Bailea, Renate Alberb, Lambe Barandovskic, Mahmut Coşkund, Munevver Coskune, Helena Danielssonf, Ludwig De Temmermang, Harry Harmensh, Zvonka Jerani, Sébastien Leblondj, Javier Martínez-Abaigark, Encarnación Núñez-Oliverak, Winfried Schröderl, Gunilla Pihl Karlssonf, Juha Piispanenm, Harald G. Zechmeistern, Zdravko Spirico, Trajče Stafilovc, Lotti Thönip, Jesús Miguel Santamaríaa aUniversidad de Navarra, Instituto de Biodiversidad y Medioambiente BIOMA, Irunlarrea 1, 31008 Pamplona, Spain bAgency for Environment and Climate Protection, Biological Laboratory, Unterbergstr. 2, 39055 Leifers, Italy cInstitute of Physics, Faculty of Natural Sciences and Mathematics, Ss Cyril and Methodius University in Skopje, POB 162, 1000 Skopje, Macedonia dCanakkale Onsekiz Mart University, Faculty of Medicine, Turkey eCanakkale Onsekiz Mart University, Vocational Health School, Turkey fIVL - Swedish Environmental Research Institute, Sweden gVeterinary and Agrochemical Research Centre CODA-CERVA, Tervuren, Belgium hUK Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK iJožef Stefan Institute, Ljubljana, Slovenia jPatriNat (OFB, MNHN), 12 Rue Buffon, CP39, 75005 Paris, France kUniversidad de La Rioja, Facultad de Ciencia y Tecnología, Madre de Dios 53, 26006 Logroño, Spain lChair of Landscape Ecology, University of Vechta, P.O.B. 1553, 49364 Vechta, Germany mNatural Resources Institute Finland, Paavo Havaksen tie 3, FI-90570 Oulu, Finland nUniversity of Vienna, Department of Biodiversity and Conservation Biology, Rennweg 14, 1030 Vienna, Austria oGreen Infrastructure Ltd., Borongajska cesta 81c., HR-10000 Zagreb, Croatia pFUB - Research Group for Environmental Monitoring, Alte Jonastrasse 83, 8640 Rapperswil, Switzerland © 2025 The Author(s)
  • [ X ]
    Öğe
    First Europe-wide correlation analysis identifying factors best explaining the total nitrogen concentration in mosses
    (Pergamon-Elsevier Science Ltd, 2010) Schroeder, Winfried; Holy, Marcel; Pesch, Roland; Harmens, Harry; Fagerli, Hilde; Alber, Renate; Coskun, Mahmut
    In this study, the indicative value of mosses as biomonitors of atmospheric nitrogen (N) depositions and air concentrations on the one hand and site-specific and regional factors which explain best the total N concentration in mosses on the other hand were investigated for the first time at a European scale using correlation analyses. The analyses included data from mosses collected from 2781 sites across Europe within the framework of the European moss survey 2005/6, which was coordinated by the International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops (ICP Vegetation). Modelled atmospheric N deposition and air concentration data were calculated using the Unified EMEP Model of the European Monitoring and Evaluation Programme (EMEP) of the Convention on Long-range Transboundary Air Pollution (CLRTAP). The modelled deposition and concentration data encompass various N compounds. In order to assess the correlations between moss tissue total N concentrations and the chosen predictors. Spearman rank correlation analysis and Classification and Regression Trees (CART) were applied. The Spearman rank correlation analysis showed that the total N concentration in mosses and modelled N depositions and air concentrations are significantly correlated (0.53 <= r(s) <= 0.68, p < 0.001). Correlations with other predictors were lower than 0.55. The CART analysis indicated that the variation in the total N concentration in mosses was best explained by the variation in NH4+ concentrations in air, followed by NO2 concentrations in air, sampled moss species and total dry N deposition. The total N concentrations in mosses mirror land use-related atmospheric concentrations and depositions of N across Europe. In addition to already proven associations to measured N deposition on a local scale the study at hand gives a scientific prove on the association of N concentration in mosses and modelled deposition at the European scale. (C) 2010 Elsevier Ltd. All rights reserved.
  • [ X ]
    Öğe
    First thorough identification of factors associated with Cd, Hg and Pb concentrations in mosses sampled in the European Surveys 1990, 1995, 2000 and 2005
    (Springer, 2009) Holy, Marcel; Pesch, Roland; Schroeder, Winfried; Harmens, Harry; Ilyin, Ilia; Alber, Renate; Aleksiayenak, Yuliya
    The aim of this study was, for the first time ever, to thoroughly identify the factors influencing Cd, Hg and Pb concentrations in mosses sampled within the framework of the European Heavy Metals in Mosses Surveys 1990-2005. These investigations can be seen as a follow up of a previous study where only the moss data recorded in the survey 2005 was included in the analysis (Schroder et al. 2010). The analyses of this investigation give a complete overview on the statistical association of Cd, Hg and Pb concentrations in mosses and sampling site-specific and regional characteristics, encompassing data from 4661 (1990), 7301 (1995), 6764 (2000) and 5600 (2005) sampling sites across Europe. From the many metals monitored in the European moss surveys, Cd, Hg and Pb were used as examples, since only for these three metals deposition measurements are being recorded in the framework of the European Monitoring and Evaluation Programme (EMEP). As exemplary case studies revealed that other factors besides atmospheric deposition of metals influence the element concentrations in mosses, the moss datasets of the above mentioned surveys were analysed by means of bivariate statistics and decision tree analysis in order to identify factors influencing metal bioaccumulation. In the analyses we used the metadata recorded during the sampling as well as additional geodata on, e.g., depositions, emissions and land use. Bivariate Spearman correlation analyses showed the highest correlations between Cd and Pb concentrations in mosses and EMEP modelled total deposition data (0.62 a parts per thousand currency signaEuro parts per thousand r(s) a parts per thousand currency signaEuro parts per thousand 0.73). For Hg the correlations with all the tested factors were considerably lower (e.g. total deposition r (s) a parts per thousand currency signaEuro parts per thousand 0.24). Decision tree analyses by means of Classification and Regression Trees (CART) identified the total deposition as the statistically most significant factor for the Cd and Pb concentrations in the mosses in all four monitoring campaigns. For Hg, the most significant factor in 1990 as identified by CART was the distance to the nearest Hg source recorded in the European Pollutant Emission Register, in 1995 and 2000 it was the analytical method, and in 2005 it was the sampled moss species. The strong correlations between the Cd and Pb concentrations in the mosses and the total deposition can be used to calculate deposition maps with a regression kriging approach on the basis of surface maps on the element concentrations in the mosses.
  • [ X ]
    Öğe
    Spatial distribution and isotopic signatures of N and C in mosses across Europe
    (Elsevier B.V., 2025) Izquieta-Rojano, Sheila; Morera-Gómez, Yasser; Elustondo, David; Lasheras, Esther; Santamaría, Carolina; Torrens-Baile, Julen; Alber, Renate
    The accumulation of nitrogen (N) in moss tissue has proven to be a reliable marker of increasing N deposition. However, this measurement does not offer additional data about the origin of pollution. In this respect, the analysis of the N isotopic ratios might be a helpful tool in providing supplementary information about the nature of the nitrogenous species in biomonitoring surveys. Furthermore, isotopic signatures have been extensively used in the study of N and carbon (C) biogeochemical cycles. The main purpose of this study was to determine N and C elemental contents and their stable isotopes in mosses to investigate atmospheric pollution patterns across Europe. We aimed at identifying the main N polluted areas and evaluating the potential use of isotopic signatures in the attribution of pollution sources at a regional scale. With these objectives in mind, >1300 samples from 15 countries from Europe, all of them participants of the ICP-Vegetation programme 2005–2006, were analyzed for their C and N contents and ?15N and ?13C. The results were compared to those derived from EMEP model, which provided modeled deposition and emission data, as well as to the predominant land uses at the sampling sites (based on CORINE Land Cover). This evaluation suggests that additional measurements of stable C and N isotopes in mosses could be a valuable tool in European environmental surveys. Such measurements not only provide useful information for identifying probable pollution sources but also enable the quantification of their contributions, serving as biological indicators of significant environmental processes. This study presents the first quantitative assessment of major atmospheric nitrogen (N) sources based on stable isotope analysis on a European scale, establishing a framework for evaluating historical changes in N across the region. © 2024 The Author(s)

| Çanakkale Onsekiz Mart Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Çanakkale Onsekiz Mart Üniversitesi, Çanakkale, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim