Yazar "Ünal, Mehmet Altay" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A novel and mass-sensitive quartz tuning fork platform for glial fibrillary acidic protein determination(Elsevier, 2025) Özcan, Burcu; Uludağ, İnci; Ünal, Mehmet Altay; Arı, Fikret; Sezgintürk, Mustafa Kemal; Özkan, Sibel A.Traumatic brain injury (TBI) is a major cause of mortality and disability worldwide, and its diagnosis is still difficult. A unique blood biomarker for numerous neurological disorders, including traumatic brain injury, is glial fibrillary acidic protein (GFAP). Portable, quick, and functional equipments are crucial in fighting against neurological illnesses. Quartz Tuning Fork (QTF) biosensors are attracting great attention due to their seamless integration with miniaturized and portable devices. This study introduces a new, adaptable, affordable frequency analyzer for GFAP detection. A simple and stable process to design a QTF system which has gold surface modified with 3-mercaptopropionic acid (3-MPA) and its biocompatibility with GFAP antigen was investigated. The surface morphology of the QTF system was analyzed during its immobilization procedure using Atomic Force Microscopy (AFM). The constructed QTF sensor system demonstrated high repeatability (the standard deviation: +/- 0.12183 Hz), good reproducibility, linearity, ability to detect antigen concentrations at femtogram levels. It proved that the QTF sensor system decorated with 3-MPA could be a good choice for the sensitive determination of GFAP, according to the statistical data. The modified QTF sensor demonstrated remarkably straightforward and mass-sensitive GFAP detection. The developed QTF-based biosensor achieved an outstanding linear detection range of 1-100 fg mL-1. The responses of the designed QTF-based sensor to commercial human serum also show that it is a successful and promising system for clinical use.Öğe An innovative and mass-sensitive quartz tuning fork (QTF) biosensor for GFAP detection: A novel approach for traumatic brain injury diagnosis(Elsevier Ltd, 2025) Özcan, Burcu; Uludağ Anıl, İnci; Ünal, Mehmet Altay; Arı, Fikret; Sezgintürk, Mustafa Kemal; Özkan, Sibel AyşılThe early diagnosis and management of traumatic brain injury (TBI) are dependent upon the early and precise detection of glial fibrillary acidic protein (GFAP). In this investigation, a novel biosensor based on quartz tuning forks (QTF) was introduced and functionalized with 11-mercaptoundecanoic acid (11-MUA). This biosensor is designed to facilitate the highly sensitive and selective detection of GFAP in human serum. In contrast to conventional neuroimaging methods, which are resource-intensive and frequently inaccessible in emergency situations, this innovative biosensor offers a portable, cost-effective, and efficient alternative for rapid GFAP measurement. The detection range of the system is 0.05 fg mL−1 to 25 fg mL−1. The Atomic Force Microscopy (AFM) was utilized to visualize the morphology of the QTF surface during the immobilization steps of the sensor. The developed biosensor presented advantages such as ability to determine GFAP concentrations at femtogram level, reproducibility and repeatability (standard deviation: ±0.0935966 Hz, and coefficient of variation: 7.91 %). This study highlights a significant progression in biosensing technology, providing an exceptionally sensitive and scalable platform for diagnosing neurological disorders, with potential uses in point-of-care environments. © 2025 The AuthorsÖğe An innovative method for the detection of alpha synuclein, a potential biomarker of Parkinson's disease: quartz tuning fork-based mass sensitive immunosensor design(Royal Society of Chemistry, 2024) Sonuç Karaboğa, Münteha Nur; Ünal, Mehmet Altay; Arı, Fikret; Sezgintürk, Mustafa Kemal; Özkan, Sibel AyşılAn innovative biosensing fabrication strategy has been demonstrated for the first time using a quartz tuning fork (QTF) to develop a practical immunosensor for sensitive, selective and practical analysis of alpha synuclein protein (SYN alpha), a potential biomarker of Parkinson's disease. Functionalization of gold-coated QTFs was carried out in 2 steps by forming a self-assembled monolayer with 4-aminothiophenol (4-ATP) and conjugation of gold nanoparticles (AuNPs). The selective determination range for SYN alpha of the developed biosensor system is 1–500 ng mL−1 in accordance with the resonance frequency shifts associated with a limit of detection of 0.098 ng mL−1. The changes in surface morphology and elemental composition were evaluated using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and energy-dispersive X-ray spectroscopy (EDX). The remarkable point of the study is that this QTF based mass sensitive biosensor system can capture the SYN alpha target protein in cerebrospinal fluid (CSF) samples with recoveries ranging from 92% to 104%.