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1 Introduction

Charge conjugation and parity symmetry (CP) violation is an essential condition for an
asymmetry between matter and anti-matter in the present universe. On the other hand, CP
violation by the complex phase of the Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing
matrix is insufficient to explain the dominance of matter over antimatter [1, 2], meaning
that the presence of other CP violating mechanisms within or beyond the Standard Model
(SM) is required. The QCD θ-term is the only source of P and T violation within the
SM beyond the complex phase of the CKM quark-mixing matrix. However, because of the
significant suppression of electric dipole moments (EDMs) induced by the complex phase of
the CKM matrix and unobservably small CKM backgrounds, any measurement of EDM of
any quantum system would indicate of presence CP violation beyond the CKM mechanism
in the SM. EDMs are important observables generated by the CP-violating effects. Thus,
measurements of hadron EDMs lead to severe restrictions in the mechanism generating CP
violation, as detailed e.g. in ref. [3].

CP violation has recently been established in the charm sector, more precisely in the
meson decays D0 → K−K+ and D0 → π−π+ [4], and LHCb has also measured the differ-
ence of CP-asymmetry of the three-body singly Cabibbo-suppressed Λ+

c decays [5]. There
have also been quite a number of studies predicting CP asymmetries in charmed baryon
decays, see e.g. [6] and references therein. It is therefore of interest to investigate other
possible effects of CP violation in singly-charmed baryons. Indeed, a first measurement of
CP violation in Ξ+

c → pK−π+ decays has been performed by LHCb [7]. However, these
data are consistent with the hypothesis of no CP violation. On the other hand, another ex-
perimental study promises to search for direct CP violation by measuring the asymmetries
of three different decay channels of the Λ+

c baryon [8].
Here, we concentrate on the effects generated by the strong CP-violating θ-term

of QCD, that also induces electric dipole moments in light baryons, as pioneered in
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refs. [10, 11]. The proper framework to address such questions is baryon chiral pertur-
bation theory, see [12] for a review. In fact, the masses, axial charges, and electromagnetic
decays of the charmed and bottomed baryons have already been calculated in the frame-
work of the heavy baryon approach [13, 14]. More recently, the magnetic moments of the
spin-1/2 singly charmed baryons were analyzed in covariant baryon chiral perturbation
theory [15]. In this paper, we extend these studies and work out the CP-violating effects
induced by the QCD θ-term. While there is experimental activity to assess the effects
of the θ-term in neutron and proton EDMs, singly-charmed baryons offer a completely
new venue towards these elusive effects, with very different systematic uncertainties that
hamper such measurements. How competitive these measurements will be would require
a much more refined analysis as presented here. We note that recent progress towards the
first measurement of the charm baryon dipole moments has been reported in ref. [9], thus
our investigation is very timely. In the near future, further measurements with charmed
hadrons, along with different theoretical improvements, would help to further elucidate the
CP violation in the charm quark sector.

The manuscript is organized as follows. In section 2, we briefly discuss the underlying
chiral Lagrangian. The CP-violating electromagnetic form factor of the singly-charmed
baryons is worked out in section 3 followed by the display of our numerical results in
section 4. Section 5 contains the summary and outlook. The appendices contain some
technicalities as well as more detailed tables of results.

2 Chiral Lagrangian including CP-violating terms

The QCD Lagrangian of the strong interactions including the θ term reads

LQCD = q̄(i /D −M)q − 1
4GaµνG

µν
a + g2θ

64π2 εµνρσG
µν
a Gρσa , a = 1, . . . , 8 , (2.1)

where Gµνa is the gluon field-strength tensor, g is the strong coupling constant and M is
the quark mass matrix. Strong CP violation arising from the U(1) anomaly in QCD is
specified via the vacuum angle θ. The measurable quantity is not θ but the combination

θ0 = θ + arg detM, (2.2)

because of the anomaly. Here, to describe the phenomena related to the θ-term, we seek a
description in a properly tailored effective field theory, see e.g. refs. [16, 17] for the detailed
construction of the corresponding effective Lagrangian to one loop accuracy.

The Goldstone bosons together with the flavor singlet η0, resulting from the sponta-
neous symmetry breaking of U(3)R × U(3)L into U(1)V , are represented by the matrix-
valued field Ũ . Treating the vacuum angle θ(x) as an external field, it transforms as
θ(x) → θ′(x) = θ(x) − 2Nfα under axial U(1) rotations, with Nf the number of flavors,
and α is the rotation angle. Following the spontaneous chiral symmetry breaking, under the
axial U(1) transformation, Ũ changes but the combination of θ̄0(x) = θ(x)− i ln det Ũ(x)
stays invariant. Using this invariant combination of θ̄0(x), one can construct the most
general mesonic chiral effective Lagrangian up-to-and-including second chiral order

L =− V0 + V1〈∇µŨ †∇µŨ〉+ V2〈χ̃Ũ + χ̃Ũ †〉+ iV3〈χ̃Ũ − χ̃Ũ †〉
+ V4〈Ũ∇µŨ †〉〈Ũ †∇µŨ〉.

(2.3)
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Note that 〈. . .〉 denotes the trace in flavor space and χ̃ = 2B0M, with the light quark mass
matrixM = diag(mu,md,ms). The covariant derivative of Ũ is given by

∇µŨ = ∂µŨ − i(vµ + aµ)Ũ + iŨ(vµ − aµ), (2.4)

where vµ and aµ are the conventional vector and axial-vector external sources. The Vi
coefficients in the Lagrangian (2.3) are functions of θ̄0. One needs to determine the vacuum
expectation value of Ũ in order to include non-trivial vacuum effects based on the angle
θ0. Parameterizing the vacuum as

U0 = diag(e−iϕu , e−iϕd , e−iϕs), (2.5)

the minimized potential energy V (U0) can be determined using the notation θ̄0 = θ0 −∑
q ϕq. In this way, the Taylor expansions of the Vi functions in terms of θ̄0 yield

Vi(θ̄0) =
∞∑
n=0

V
(2n)
i θ̄2n

0 for i = 0, 1, 2, 4

V3(θ̄0) =
∞∑
n=0

V
(2n+1)
i θ̄2n+1

0 .

(2.6)

Note that while all other Vi are even function of θ̄0, V3 is odd. To express the La-
grangian in terms of the angles ϕq one then writes the Ũ with the vacuum expectation
value U0 as Ũ =

√
U0U
√
U0 by choosing

U = exp
(
i

√
2
3
η0
F0

+ i

√
2

Fπ
φ

)
, (2.7)

where φ represents the Goldstone boson octet

φ =


1√
2π

0 + 1√
6η8 π+ K+

π− − 1√
2π

0 + 1√
6η8 K0

K− K̄0 − 2√
6η8

 .
Thus, the chiral effective Lagrangian in terms of the Goldstone boson fields composed in
Ũ reads [18]

Lφ = −V0 + V1〈∇µU †∇µU〉+ (V2 + BV3)〈χ(U + U †)〉 − iAV2〈U − U †〉
+AV3〈U + U †〉+ V4〈U∇µU †〉〈U †∇µU〉 .

(2.8)

Here χ = 2B0diag(mucosϕu,mdcosϕd,mscosϕs). To leading order, A and B are given as

A = V
(2)

0

V
(0)

2
θ̄0 +O(δ4), B = V

(1)
3

V
(0)

2
θ̄0 +O(δ6). (2.9)

After vacuum alignment, the Vi coefficients are now functions of θ̄0 +
√

6η0/F0. Further,
the normalization of the kinetic terms in the Lagrangian (2.3) provides

V1(0) = V2(0) = F 2
π

4 , V4(0) = 1
12(F 2

0 − F 2
π ). (2.10)
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In principle, the coupling of the η0 singlet is different from Fπ because the subgroup U(3)V
does not present a nonet symmetry. However, in the large Nc-limit F0 = Fπ. Moreover,
the quantity of θ̄0 can be denoted in terms of physical quantities [21]

θ̄0 =
[
1 + 4V (2)

0
F 2
π

4M2
K −M2

π

M2
π(2M2

K −M2
π)

]−1

θ0. (2.11)

Here, we note that θ̄0 = O(δ2), and take 1/Nc = O(δ2) as counting rules [19]. More detail
and information on the formalism used in the work can be found in e.g. in refs. [18, 20].

We now turn to the baryon sector of the effective Lagrangian. In the SU(3) flavor
representation the spin-1/2 anti-symmetric triplet and symmetric sextet charmed baryon
states are denoted as in the following matrices, respectively,

B3̄ =

 0 Λ+
c Ξ+

c

−Λ+
c 0 Ξ0

c

−Ξ+
c −Ξ0

c 0

 , B6 =


Σ++
c

Σ+
c√
2

Ξ
′+
c√
2

Σ+
c√
2 Σ0

c
Ξ′0
c√
2

Ξ
′+
c√
2

Ξ′0
c√
2 Ω0

c

 .

Similarly to the mesonic Lagrangian one can write down the most general effective La-
grangian for the charmed baryon multiplets. Here, we only present the terms pertinent
to the calculation. In the quark mass and momentum expansion, the relevant free and
interaction Lagrangians up to the second chiral order are given by [13, 15, 18, 22, 24],

L(1)
φB,free = 1

2〈B̄3̄
(
i /D −m3̄

)
B3̄〉+ 〈B̄6

(
i /D −m6

)
B6̄〉,

L(1)
φB,int = g1

2 〈B̄6/uγ5B6〉+ g2

2

[
〈B̄6/uγ5B3̄〉+ h.c.

]
+ g6

2 〈B̄3̄/uγ5B3̄〉

+ g1

2 〈B̄6γ
µγ5B6〉〈uµ〉+ g2

2

[
〈B̄6γ

µγ5B3̄〉+ h.c.
]
〈uµ〉+ g6

2 〈B̄3̄γ
µγ5B3̄〉〈uµ〉,

L(2)
3̄3̄ = w16/17〈B̄3̄σ

µνF+
µνB3̄〉+ w18〈B̄3̄σ

µνB3̄〉〈F+
µν〉+ bD/F 〈B̄3̄χ̃+B3̄〉+ b0〈B̄3̄B3̄〉〈χ̃+〉

+ iw10/11

√
6

F0
η0〈B̄3̄χ̃−B3̄〉+ iw12

√
6

F0
η0〈B̄3̄B3̄〉〈χ̃−〉

+ i

(
w

′

13/14θ̄0 + w13/14

√
6

F0
η0

)
〈B̄3̄σ

µνγ5F
+
µνB3̄〉

+ i

(
w

′
15θ̄0 + w15

√
6

F0
η0

)
〈B̄3̄σ

µνγ5B3̄〉〈F+
µν〉,

L(2)
66 = w16/17〈B̄6σ

µνF+
µνB6〉+ w18〈B̄6σ

µνB6〉〈F+
µν〉+ bD/F 〈B̄6χ̃+B6〉+ b0〈B̄6B6〉〈χ̃+〉

+ iw10/11

√
6

F0
η0〈B̄6χ̃−B6〉+ iw12

√
6

F0
η0〈B̄6B6〉〈χ̃−〉

+ i

(
w

′

13/14θ̄0 + w13/14

√
6

F0
η0

)
〈B̄6σ

µνγ5F
+
µνB6〉

+ i

(
w

′
15θ̄0 + w15

√
6

F0
η0

)
〈B̄6σ

µνγ5B6〉〈F+
µν〉,

L(2)
63̄ = w16/17〈B̄6σ

µνF+
µνB3̄〉+ bD/F 〈B̄6χ̃+B3̄〉+ iw10/11

√
6

F0
η0〈B̄6χ̃−B3̄〉

+ iw13/14

√
6

F0
η0〈B̄6σ

µνγ5F
+
µνB3̄〉+ h.c. , (2.12)
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where the relevant building blocks are
χ̃− = χ− − iA(U + U †)− iBχ+ ,

χ̃+ = χ+ − iA(U − U †)− iBχ− ,
DµB = ∂µB + ΓµB +BΓTµ ,

Γµ = 1
2[u†(∂µ− irµ)u+ u(∂µ− ilµ)u†] ,

u = i[u†(∂µ− irµ)u− u(∂µ− ilµ)u†] .

(2.13)

The charge matrix for the singly-charmed baryons is Qh = diag(1, 0, 0), while for the light
quarks the charge matrix is Ql = diag(2/3,−1/3,−1/3). We use w10/11 + 3w12 = w′10 as
in ref. [21].

As can be seen from the contributing Lagrangians, there are quite number of low-energy
constants (LECs). The meson-baryon coupling constants gi (i = 1, . . . , 6), the symmetry-
breaking LECs bD and bF as well as the LECs w16/17, w18 related to the CP-conserving
electromagnetic response can all be taken from earlier studies of different observables, as
detailed in section 4.

This leaves us with the yet undetermined LECs w′10, w
′
13/14, w

′
15 and w13/14, w15. As

will be shown, we can fix w13/14, w15 from recent lattice results QCD for the neutron and
proton electric dipole moments, dn and dp, respectively. The remaining of these LECs
will be varied as 0+0.5

−0.5 GeV−1, that is within a natural range. This naive dimensional
analysis should be eventually overcome by a more sophisticated modeling of the LECs
or invoking further lattice QCD results. Having fixed/estimated all the LECs will then
allow to estimate the CP-violating contributions to the singly-charmed baryons induced by
the θ-term.

3 CP-violating electromagnetic form factor

The electromagnetic form factors of a baryon are defined via the matrix element of the
electromagnetic current,

〈B(pf ) | Jµem |B(pi)〉 = ū(pf )
[
γµF1(q2)− iF2(q2)

2mB
σµνqν (3.1)

+ i(γµq2γ5 − 2mBq
µγ5)FA(q2)− F3(q2)

2mB
σµνqνγ5

]
u(pi) ,

with q2 = (pf − pi)2 the invariant momentum transfer squared, mB the baryon mass and
Jµem the electromagnetic current. Here, F1(q2) and F2(q2) are the P- and CP-conserving
Dirac and Pauli form factors, respectively. FA(q2) denotes the P-violating anapole form
factor, and F3(q2), which will be considered throughout this work, the P- and CP-violating
electric dipole form factor. The electric dipole moment of the baryon B is then given by

dB = F3,B(0)
2mB

. (3.2)

In what follows, we will use the effective Lagrangian to calculate the CP-violating
form factor of the singly-charmed baryons at next-to-leading (NLO) order, which includes
tree as well as loop diagrams as shown in figure 1, where we display the corresponding
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Feynman diagrams. Tree-level diagrams at leading order are presented in (a) and (b).
One-loop diagrams at order O(δ2) and O(δ3) in (c)-(d), and (e)-(h), respectively. The type
of diagrams in (g)-(h) with pionic or kaonic loops of the antitriplet and the sextet charmed
baryons are canceling each other, thus they are not displayed here.

We show different combinations of the charmed baryon states from anti-triplet and
sextet multiplets considered throughout the calculation in figure 2.

The results obtained for the form factor F3(q2) of the charmed baryons coming from
the tree-level diagrams are collected in table 1 with

α = 576V (2)
0 V

(1)
3

(F0FπMη0)2 . (3.3)

As usual in the EOMS scheme, the loop contributions are rather lengthy expression.
Let us discuss the case of the Λ+

c . The one-loop contribution can be written as, cf. figure 1,

F loop
3,Λ+

c
(q2) =

2∑
i=1

eθ̄0V
(2)

0 m̃

π2F 4
π

1
(4m̃2 − q2)

×
[
Cicd

(
mi(m̃+mi)

)(
2Jcdi (m̃2,m2

i ,M
2)− 2Jcdi (q2,M2,M2)

+ (2M2 + 2m̃2 − 2m2
i − q2)Jcdi (m̃2, m̃2, q2,M2,m2

i ,M
2)
)]

+
4∑
i=3

eθ̄0V
(2)

0
π2F 4

π

1
(4m̃2 − q2)

[
Cief

(
− Jefi (M2

i )(4m̃2 − q2) + Jefi (m̃2)(4m̃2 − q2)

− (M2
i (q2 + 4m̃2)− 4m̃2q2)Jefi (m̃2, m̃2,M2

i ) + 8m̃2(M2
i − 2m̃2)Jefi (q2, m̃2, m̃2)

+ 4m̃2M2
i (2M2

i − 8m̃2 + q2)Jefi (m̃2, m̃2, q2, m̃2,M2, m̃2)
)]

+
7∑
i=5

eθ̄0V
(2)

0
π2F 4

π

1
(4m̃2 − q2)

[
Cief

(
− Jefi (M2

i )(4m̃2 − q2) + Jefi (m2
i )(4m̃2 − q2)

−
(
M2
i (4m̃mi + q2) + ( ˜m+mi)(4m̃2mi −miq

2 − m̃(4m2
i + q2))

)
Jefi (m̃2,m2

i ,M
2
i )

− 4m̃(m̃+mi)(m̃2 +m2
i −M2

i )Jefi (q2,m2
i ,m

2
i ) + 2m̃(m̃+mi)

×
(
2M4

i + (m̃2 −m2
i )(2m̃2 − 2m2

i − q2)

+M2
i (q2 − 4m̃2 − 4m2

i )
)
Jefi (m̃2, m̃2, q2,m2

i ,M
2
i ,m

2
i )
)]

+
10∑
i=8

eθ̄0V
(2)

0
π2F 4

π

1
(4m̃2 − q2)

[
Cief

(
− Jefi (M2

i )(4m̃2 − q2) + Jefi (m2
i )(4m̃2 − q2)

+
(
m̃2q2 − 4m̃3mi + q2(m2

i −M2
i ) + 2m̃mi(q2 + 2m2

i − 2M2
i )
)
Jefi (m̃2,m2

i ,M
2
i )

− 4m̃(m̃+mi)(m̃2 +m2
i −M2

i )Jefi (q2,m2
i ,m

2
i ) + 2m̃(m̃+mi)

×
(
2M4

i + 2m̃4 +M2
i (q2 − 4m2

i ) +m2
i (2m2

i + q2)

− m̃2(4M2
i + 4m2

i + q2))
)
Jefi (m̃2, m̃2, q2,m2

i ,M
2
i ,m

2
i )
)]

+ 16eθ̄0V
(2)

0
π2F 2

πF 2
0

[
C11
gh

(
Jgh11 (M2)− Jgh11 (m̃2)− (M2 − 4m̃2)Jgh11 (m̃2,M2)

)]
, (3.4)
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(a)

⊗

(b)

⧫

⊗

η0

(c)

⊗ ■

(d)

⊗■

(e)

⊗ ■⧫

(f)

⊗■ ⧫

(g)

η0

⊗ ⧫

(h)

η0

⊗⧫

Figure 1. CP-violating contributions of the spin-1/2 charmed baryons. Solid lines correspond to
contribution from either spin-1/2 anti-triplet or sextet multiplets of charmed baryons. Filled circles
are second-order mesonic vertices, squares and diamonds represent vertices generated by the first
and second order meson-baryon Lagrangian, respectively. CP-violating vertices are denoted by ⊗.

⊗ ■
3̄ 3̄ 3̄

⊗ ■
3̄ 6 3̄

⊗ ■
6 3̄ 6

⊗ ■
6 6 6

⊗ ■⧫
3̄ 3̄ 3̄ 3̄

⊗ ■⧫
3̄ 6 6 3̄

⊗ ■⧫
6 3̄ 3̄ 6

⊗ ■⧫
6 6 6 6

⊗ ⧫
3̄ 3̄ 3̄

⊗ ⧫
3̄ 6 3̄

⊗ ⧫
6 3̄ 6

⊗ ⧫
6 6 6

Figure 2. Different combinations of the spin-1/2 anti-triplet and sextet charmed baryons con-
tributing to F3(q2).

withmi, m̃i andMi denoting the masses of the corresponding internal and external baryons
and meson running in the loop, for notational simplicity. In the case at hand, m̃ =
mΛ+

c
. The J(mi,Mi, q

2) functions can be reduced to the scalar loop functions given in
appendix A, and the labels cd, ef and gh refer to the types of diagrams shown in figure 1.
The corresponding coefficients Ccd, Cef and Cgh for the Λ+

c together with the intermediate
meson-baryon states are shown in table 2, the corresponding tables for the other particles
can be found in appendix B. A Mathematica notebook with these loop functions can be
obtained from the first author of this paper.
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States Contributions
Λ+
c eθ̄0 mΛc [2α(w13/14 + 2w15) + 8(w′13/14 + 2w′15)]

B3̄ Ξ+
c eθ̄0 mΞc [2α(w13/14 + 2w15) + 8(w′13/14 + 2w′15)]

Ξ0
c eθ̄0 mΞc 4(αw15 + 4w′15)

Σ++
c eθ̄0 mΣc [2α(w13/14 + w15) + 8(w′13/14 + w′15)]

Σ+
c eθ̄0 mΣc [α(w13/14 + 2w15) + 4(w′13/14 + 2w′15)]

Σ0
c eθ̄0 mΣc 2(αw15 + 4w′15)

B6 Ξ′+
c eθ̄0 mΞ′

c
[α(w13/14 + 2w15) + 4(w′13/14 + 2w′15)]

Ξ′0
c eθ̄0 mΞ′

c
2(αw15 + 4w′15)

Ω0
c eθ̄0 mΩc 2(αw15 + 4w′15)

Table 1. Tree-level contribution to the F3(q2) of the charmed baryons.

Diagram type number meson-baryon state Coefficient
(c), (d) 1 Ξ0

c ,K
± 2g6bD/F

2 Ξ′0
c ,K

± g2bD/F

3 Λ+
c , η8

8
3g6bD/F (w16/17 + 2w18)

4 Λ+
c , η0

32
3 βg6(w16/17 + 2w18)

5 Ξ+
c ,K

0 4g6bD/F (w16/17 + 2w18)

(e), (f) 6 Ξ′0
c ,K

± 2g2bD/Fw18

7 Ξ′+
c ,K

0 g2bD/F (w16/17 + 2w18)

8 Σ0
c , π
± 4g2bD/Fw18

9 Σ+
c , π

0 2g2bD/F (w16/17 + 2w18)

10 Σ++
c , π± 4g2bD/F (w16/17 + w18)

(g), (h) 11 Λ+
c , η0 β(w13/14 + 2w15)

Table 2. Loop contribution to the F3(q2) of the Λ+
c baryon with β = (bD/F + b0 + 3w′10).
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4 Results

First, we must fix parameters. The pion decay constant is taken as Fπ = 92.2MeV. In what
follows, due to the lack of data from the charmed meson sector, we make recourse to the
ground state baryon octet as much as possible to fix as many LECs as possible. While this
is an approximation, we expect that we are estimating at least the right order of magnitude
of the EDMs of the charmed baryons. Consequently, two symmetry-breaking LECs in the
baryon sector can be obtained from baryon mass splittings. We use bD = −0.606 GeV−1

and bF = −0.209 GeV−1 [23, 24]. The tree-level contributions can be expressed in terms
of two independent linear combinations of unknown LECs as α(w13/14 + 4w′13/14) and
αw15 + 4w′15, cf. table 1. The loop contributions are also dependent on unknown LECs,
viz., w′10, w13/14 and w15. The conventional magnetic moment couplings, w18 is taken
equal to w16/17 = 0.40, determined from fits to calculations to baryon magnetic moments
in [25, 26].

Further, V (2)
0 = −5× 10−4 GeV4 and V (1)

3 = 3.5× 10−4 GeV2 are the values obtained
from an analysis of η − η′ mixing in U(3) chiral perturbation theory [27]. The various
baryon-meson couplings are taken from refs. [13, 14], g1 = 0.98, g2 = −0.60, g3 = 0.85,
and g4 = 1.04. Because of the forbidden B3̄B3̄φ-vertex, we have g6 = 0. We use the
physical masses of the pertinent mesons and baryons running in the corresponding loops,
cf. tables 4–11.

As the unknown LECs cannot be parameterized such a common constant as in [24],
since the combinations coming from different particles are different, they have to be consid-
ered individually. Using the lattice data from [28] at physical pion mass, we use the neutron
dipole moment to fix βw15 from the Ξ0

c by comparing the loop contributions. With that,
we can use the proton electric dipole moment to determine βw13/14 from the Λ+

c . We get

βw13/14 = −0.00435 GeV−1, βw15 = 0.00175 GeV−1. (4.1)

With these obtained values, we take the variation of w′10, w
′
13/14 and w′15, and calcu-

late the CP-violating form factor F3(q2) for the singly-charmed baryons in the range
q2 ' 0.05 . . . 0.3GeV2 as given in tables 12–14. We are well aware that there are other
determinations of dp and dn in the literature, see e.g. refs. [29, 30], and that there is an
on-going debate on the axial rotation in the finite volume (mixing between the form factors
F2 and F3, see e.g. ref. [31]). However, since our study is largely exploratory, we do not
explore the whole possible parameter space.

The electric dipole moments for the various baryons are collected in table 3. As
there is a sizeable uncertainty induced by the unknown LECs, we refrain from performing
a systematic error analysis accounting e.g. for the effects of higher orders in the chiral
expansion. Hopefully, lattice QCD will be able to supply pertinent information on the
LECs so that more accurate predictions can be made.

5 Conclusion

In this paper, we have performed a one-loop calculation of the CP-violating form fac-
tor F3(q2) and the corresponding electric dipole moments of the spin-1/2 singly-charmed
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Λ+
c Ξ+

c Ξ0
c Σ++

c Σ+
c Σ0

c Ξ′+
c Ξ′0

c Ω0
c

Set 1 0.0476 0.0470 0.0294 0.0047 0.0053 0.0058 0.0007 0.0085 0.0067
Set 2 0.0011 0.0005 −0.0015 −0.0090 −0.0049 −0.0010 −0.0097 0.0015 −0.0003
Set 3 −0.0454 −0.0460 −0.0324 −0.0228 −0.0153 −0.0078 −0.0202 −0.0053 −0.0074

Table 3. Electric dipole moments for the singly-charmed baryons in units of e θ0 fm. Set 1,2,3
refers to w′10 = w′13/14 = w′15 = −0.5, 0,+0.5, in order.

baryons, where the mechanism of the CP violation is the QCD θ-term. Not all the ap-
pearing low-energy constants could be fixed from experimental or lattice QCD data, so the
resulting predictions show a spread, cf. table 3 and the tables in appendix C. We hope that
with more lattice QCD studies on strong CP violations, these LECs can be determined
and more accurate predictions can be made, not to mention possible experimental deter-
minations.
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A Scalar loop integrals

The scalar loop integrals of one-, two-, and three-point functions which are used for the
calculation of the diagrams are given by

J0(m2) = (2πµ)4−d

iπ2

∫
ddk

k2−m2+i0+ ,

J0(p2,m2
1,m

2
2) = (2πµ)4−d

iπ2

∫
ddk

[k2−m2
1+i0+][(k+p)2−m2

2+i0+]
,

J0(p2
i ,(pf−pi)2,p2

f ,m
2
1,m

2
2,m

2
3)

= (2πµ)4−d

iπ2

∫
ddk

[k2−m2
1+i0+][(k−pi)2−m2

2+i0+][(k−pf )2−m2
3+i0+]

.

B Loop contributions

All one-loop contributions to the various baryons take the form as given in eq. (3.4). In this
appendix, we collect the corresponding intermediate meson-baryon states and the values
of the coefficients Ccd, Cef and Cgh for the baryons not given in the main text.
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Diagram type Number Meson-baryon state Coefficient
1 Ξ0

c , π
± g6bD/F

(c), (d) 2 Ω0
c ,K

± g2bD/F

3 Σ++
c ,K± g2bD/F

4 Ξ′0
c , π

± g2bD/F

5 Ξ+
c , η8 g6bD/F (w16/17 + 2w18)

6 Ξ+
c , η0 βg6(w16/17 + 2w18)

7 Ξ+
c , π

0 g6bD/F (w16/17 + 2w18)
8 Ξ′0

c , π
± g2bD/Fw18

(e), (f) 9 Ξ′+
c , η8 g2bD/F (w16/17 + 2w18)

10 Σ+
c ,K

0 g2bD/F (w16/17 + 2w18)
11 Ξ′+

c , π
0 g2bD/F (w16/17 + 2w18)

12 Σ++
c ,K± g2bD/F (w16/17 + w18)

13 Ω0
c ,K

± g2bD/Fw18

(g), (h) 14 Ξ+
c , η0 β(w13/14 + 2w15)

Table 4. Loop contribution to the F3(q2) of the Ξ+
c baryon.

Diagram type Number Meson-baryon state Coefficient
1 Λ+

c ,K
± g6bD/F

(c), (d) 2 Ω0
c ,K

± g2bD/F

3 Ξ+
c , π

± g6bD/F

4 Σ+
c ,K

± g2bD/F

5 Ξ′+
c , π

± g2bD/F

6 Ξ0
c , η8 g6bD/Fw18

7 Ξ0
c , η0 βg6w18

8 Ξ0
c , π

0 g6bD/Fw18

(e), (f) 9 Ξ′+
c , π

± g2bD/F (w16/17 + 2w18)

10 Σ0
c ,K

0 g2bD/Fw18

11 Ξ′0
c , η8 g2bD/Fw18

12 Ξ′0
c , π

0 g2bD/Fw18

13 Σ+
c ,K

± g2bD/F (w16/17 + 2w18)

14 Ω0
c ,K

0 g2bD/Fw18

(g), (h) 15 Ξ0
c , η0 βw15

Table 5. Loop contribution to the F3(q2) of the Ξ0
c baryon.
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Diagram type Number Meson-baryon state Coefficient
1 Ξ′+

c ,K
± g1bD/F

(c), (d) 2 Σ+
c , π

± g1bD/F

3 Ξ+
c ,K

± g2bD/F

4 Λ+
c , π

± g2bD/F

5 Σ++
c , η8 g1bD/F (w16/17 + w18)

6 Σ++
c , η0 βg1(w16/17 + w18)

(e), (f) 7 Σ++
c , π0 g1bD/F (w16/17 + w18)

8 Ξ+
c ,K

± g2bD/F (w16/17 + 2w18)

9 Λ0
c , π
± g2bD/F (w16/17 + 2w18)

(g), (h) 10 Σ++
c , η0 β(w13/14 + w15)

Table 6. Loop contribution to the F3(q2) of the Σ++
c baryon.

Diagram type Number Meson-baryon state Coefficient
(c), (d) 1 Ξ′0

c ,K
± g1bD/F

2 Ξ0
c ,K

± g2bD/F

3 Σ+
c , η8 g1bD/F (w16/17 + 2w18)

4 Σ+
c , η0 βg1(w16/17 + 2w18)

(e), (f) 5 Ξ+
c ,K

0 g2bD/F (w16/17 + w18)

6 Ξ0
c ,K

± g2bD/Fw18

7 Λ0
c , π

0 g2bD/F (w16/17 + 2w18)

(g), (h) 8 Σ+
c , η0 β(w13/14 + 2w15)

Table 7. Loop contribution to the F3(q2) of the Σ+
c baryon.

Diagram type Number Meson-baryon state Coefficient
(c), (d) 1 Σ+

c , π
± g1bD/F

2 Λ0
c , π
± g2bD/F

3 Σ0
c , η8 g1bD/Fw18

4 Σ0
c , η0 βg1w18

(e), (f) 5 Σ0
c , π

0 g1bD/Fw18

6 Ξ0
c ,K

0 g2bD/Fw18

7 Λ0
c , π
± g2bD/F (w16/17 + 2w18)

(g), (h) 8 Σ0
c , η0 βw15

Table 8. Loop contribution to the F3(q2) of the Σ0
c baryon.
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Diagram type Number Meson-baryon state Coefficient
1 Ω0

c ,K
± g1bD/F

(c), (d) 2 Σ++
c ,K± g1bD/F

3 Ξ′0
c , π

± g1bD/F

4 Ξ0
c , π
± g2bD/F

5 Ξ′+
c , η8 g1bD/F (w16/17 + 2w18)

6 Ξ′+
c , η0 βg1(w16/17 + 2w18)

7 Ξ′+
c , π

0 g1bD/F (w16/17 + 2w18)

(e), (f) 8 Σ+
c ,K

0 g1bD/F (w16/17 + 2w18)

9 Ξ+
c , η8 g2bD/F (w16/17 + 2w18)

10 Λ+
c ,K

0 g2bD/F (w16/17 + 2w18)

11 Ξ+
c , π

0 g2bD/F (w16/17 + 2w18)

12 Ξ0
c , π
± g2bD/Fw18

(g), (h) 13 Ξ′+
c , η0 β(w13/14 + 2w15)

Table 9. Loop contribution to the F3(q2) of the Ξ′+
c baryon.

Diagram type Number Meson-baryon state Coefficient
1 Σ+

c ,K
± g1bD/F

(c), (d) 2 Ξ′+
c , π

± g1bD/F

3 Λ+
c ,K

± g2bD/F

4 Ξ+
c , π

± g2bD/F

5 Ξ′0
c , η8 g1bD/Fw18

6 Ξ′0
c , η0 βg1w18

7 Ξ′0
c , π

0 g1bD/Fw18

(e), (f) 8 Σ0
c ,K

0 g1bD/Fw18

9 Ω0
c ,K

0 g1bD/Fw18

10 Λ0
c ,K

± g2bD/F (w16/17 + 2w18)

11 Ξ0
c , η8 g2bD/Fw18

12 Ξ0
c , π

0 g2bD/Fw18

(g), (h) 13 Ξ′0
c , η0 βw15

Table 10. Loop contribution to the F3(q2) of the Ξ′0
c baryon.
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Diagram type Number Meson-baryon state Coefficient
(c), (d) 1 Ξ′+

c ,K
± g1bD/F

2 Ξ+
c ,K

± g2bD/F

3 Ω0
c , η8 g1bD/Fw18

(e), (f) 4 Ω0
c , η0 βg1w18

5 Ξ+
c ,K

± g2bD/F (w16/17 + 2w18)

6 Ξ0
c ,K

0 g2bD/Fw18

(g), (h) 7 Ω0
c , η0 βw15

Table 11. Loop contribution to the F3(q2) of the Ω0
c baryon.

C Results for the CP-violating form factor

This appendix contains results for the loop contributions to the form factor F3(q2) for the
various baryons, for photon virtualities below q2 ' 0.3GeV2.

q2(GeV2) Λ+
c Ξ+

c Ξ0
c Σ++

c Σ+
c Σ0

c Ξ′+
c Ξ′0

c Ω0
c

0.0484 1.1028 1.1772 0.7362 −0.1150 0.1339 0.3832 0.0361 0.2102 0.1855
0.1024 1.1015 1.1764 0.7339 −0.0434 0.1359 0.3164 0.0452 0.2047 0.1861
0.1444 1.1004 1.1756 0.7323 −0.0175 0.1374 0.2943 0.0500 0.2027 0.1865
0.1936 1.0992 1.1747 0.7305 0.0021 0.1392 0.2789 0.0546 0.2014 0.1871
0.2500 1.0978 1.1735 0.7285 0.0181 0.1412 0.2679 0.0590 0.2007 0.1877
0.3136 1.0963 1.1722 0.7264 0.0319 0.1435 0.2598 0.0633 0.2006 0.1885

Table 12. Loop contribution to the F3(q2) of the B3̄ and B6 states for w′10, w
′
13/14, w

′
15 = −0.5.

q2(GeV2) Λ+
c Ξ+

c Ξ0
c Σ++

c Σ+
c Σ0

c Ξ′+
c Ξ′0

c Ω0
c

0.0484 0.0245 0.0121 −0.0414 −0.4594 −0.1246 0.2102 −0.2403 0.0253 −0.0108
0.1024 0.0232 0.0113 −0.0437 −0.3912 −0.1252 0.1417 −0.2339 0.0181 −0.0121
0.1444 0.0221 0.0105 −0.0453 −0.3680 −0.1257 0.1183 −0.2311 0.0147 −0.0130
0.1936 0.0209 0.0096 −0.0471 −0.3513 −0.1262 0.1015 −0.2289 0.0118 −0.0140
0.2500 0.0195 0.0085 −0.0491 −0.3388 −0.1268 0.0887 −0.2272 0.0094 −0.0152
0.3136 0.0180 0.0071 −0.0512 −0.3290 −0.1275 0.0786 −0.2259 0.0073 −0.0165

Table 13. Loop contribution to the F3(q2) of the B3̄ and B6 states for w′10, w
′
13/14, w

′
15 = 0.
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q2(GeV2) Λ+
c Ξ+

c Ξ0
c Σ++

c Σ+
c Σ0

c Ξ′+
c Ξ′0

c Ω0
c

0.0484 −1.0545 −1.1538 −0.8155 −0.8065 −0.3837 0.0391 −0.5173 −0.1575 −0.2053
0.1024 −1.0558 −1.1546 −0.8177 −0.7416 −0.3869 −0.0310 −0.5135 −0.1665 −0.2083
0.1444 −1.0569 −1.1553 −0.8194 −0.7211 −0.3893 −0.0557 −0.5127 −0.1712 −0.2106
0.1936 −1.0581 −1.1563 −0.8212 −0.7075 −0.3921 −0.0741 −0.5129 −0.1757 −0.2133
0.2500 −1.0595 −1.1574 −0.8231 −0.6986 −0.3954 −0.0887 −0.5139 −0.1799 −0.2163
0.3136 −1.0610 −1.1588 −0.8253 −0.6927 −0.3991 −0.1008 −0.5156 −0.1841 −0.2196

Table 14. Loop contribution to the F3(q2) of the B3̄ and B6 states for w′10, w
′
13/14, w

′
15 = 0.5.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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