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Abstract Maximum displacement and the maximum interstorey drift ratio are the 
important factors for the measurement of the vulnerability of multistorey buildings. 
For this reason, in this paper a method was proposed to calculate the maximum 
displacement and maximum interstorey drift ratio (IDR) values. In this model, rein-
forced concrete multistorey structure was modeled as an equivalent flexural-shear 
frame. Maximum displacement and the maximum IDR were calculated according to 
the Equivalent Static Loads Method and The Response Spectrum Method using the 
continuum model and the results were tabulated. With the help of the obtained tables 
by this study, the maximum displacement and the maximum IDR of the regular multi-
storey structures can be calculated quickly and practically. The axial deformation of 
the vertical elements (columns and shear walls) were approximately considered in 
the study. The convergence of the presented method to the Finite Elements Method 
was investigated by two examples in the last part of the study. 

Keywords Hand method · Maximum displacement · Maximum interstorey drift 
ratio (IDR) · Response spectrum method · Equivalent static loads method 

1 Introduction 

One of the effective and practical methods used in the analysis of shear wall-frame 
systems is the continuum method. There have been many studies dealing with the 
method which was first used by Chitty in 1940 [1]. These studies include various 
situations such as static analysis and dynamic analysis [2–26]. Stafford Smith et al. 
proposed an approximate method for calculating the displacement of the high-rise 
buildings under triangular distributed loads, taking account of the continuum model
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[27]. Heidebrecht ve Rutenberg proposed an approach to determine the performance 
of frame systems by utilizing the intersorey drift ratios. In the study, the frame system 
was modeled as an equivalent shear beam [28]. Gülkan and Akkar proposed a method 
for determining IDR of the structures of which the bearing system consisting of 
frames. In the study, the multistorey frame system was idealized as an equivalent 
shear beam to achieve the maximum IDR [29]. In Miranda and Akkar’s work, they 
proposed a method of using graphs for response spectrum analysis by using the 
flexural-shear beam to obtain the IDR [16]. Xie and Wen used the Timoshenko beam 
model to calculate the IDRs of multistorey structures [30]. Khaloo and Khosravi 
investigated the effect of modes in the structures under near fault pulse like ground 
motions. In the study, the structure was idealized as an equivalent flexural shear beam 
according to the continuum method [31]. 

Yang, Pan and Li used the flexural-shear beam model to determine the maximum 
IDR of the structures under near-fault ground motion [32]. 

Fardipour et al. proposed a practical method of determining the maximum IDR 
for Australia, depending on the height of the building, the type of bearing system, the 
change in the stiffness and the mass [33]. Shodja and Rofooei developed a method 
based on the discrete mass model for determining the drift spectrum. In the method, 
the variation of the structure stiffness along the height of the structure is also taken into 
consideration [34]. Tekeli, Atımtay and Turkmen proposed a method for determining 
the lateral displacement of the reinforced concrete frame structures under the static 
loads. In the method, the frame system was considered as an equivalent shear frame 
[35]. In this study, a method has been proposed in which the maximum displacement 
and the maximum IDR are quickly and practically determined by means of tables for 
both Response Spectrum Analysis and Equivalent Static Loads Method. Subsequent 
paragraphs, however, are indented. 

In creating the tables for the method, it is assumed that 

• The properties of the building is constant and the mass is uniformly distributed 
up to the height of the building. 

• The shear deformations of the columns, shear walls and the beams are neglected. 
• The axial deformations of the beams are neglected. 
• The torsion is neglected. 
• The material is considered as linear elastic and the nonlinear geometric effects 

are ignored. 
• Slabs are assumed infinitely rigid in their own planes. 

2 Response Spectrum Analysis by the Presented Method 

The reinforced concrete multistorey building can be modeled as an equivalent 
flexural-shear beam as seen in Fig. 1.

In accordance with this model, the 4th order parabolic partial differential equation 
of the system with undamped free vibration is written as follows.
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Fig. 1 The equivalent flexural-shear beam model of the structure

(EI) 
∂4U 

∂z4 
− Ks 

∂2U 

∂z2 
+ 

m 

h 

∂2U 

∂t2 
= 0 (1)  

where z is the vertical axis, and m/h is the distributed mass up to the height of the 
building. Ks is the equivalent shear stiffness and it is calculated by the following 
equation [4, 12]. 

Ks = 12E 

h
(
1 
s + 1 r

) (2) 

where h is the storey height, E is the modulus of elasticity, r and s are the contributions 
of columns and beams to the shear stiffness which are calculated by the following 
equations. 

s = 
p∑

j=1 

Icj 
h 

(3) 

r = 
g∑

j=1 

Ibj 
li 

(4) 

In the combined shear wall- frame system in Fig. 2, the shear stiffness is calculated 
approximately by the following equation. 

Ks = 
1.1Er 

h 
(5)

Here 1.1 is the correction factor. 
The total bending stiffness of the shear walls and columns is shown as (EI) and it 

is calculated by the following equation [4, 12]. 

(EI) = 
u∑

j=1 

EIwj + 
p∑

j=1 

EIcj (6)
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Fig. 2 The combined shear wall-frame system

If the partial differential Eq. (1) is separated into the variables using the Eq. (7), 
the ordinary differential equations in (8) and (9) are obtained. 

U(z, t) = Y(z)T(t) (7) 

(EI) 
d4 y 

dz4 
− Ks 

d2 y 

dz2 
− 

mω2 

h 

d2 y 

dt2 
= 0 (8)  

d2 y 

dt2 
+ ω2 y = 0 (9)  

Here, y shows the modal shape and ω denotes the angular frequency. The boundary 
conditions of the 4th order constant coefficient homogeneous ordinary differential 
Eq. (8) are that, the displacement and rotation at the base of the structure are zero and 
the bending moment and the shear force at the top point are zero. These boundary 
conditions are given below. 

y(0) = 0 (10)  

dy(0) 
dz 

= 0 (11) 

(EI) 
d2 y(H) 
dz2

(12) 

(EI) 
d3 y(H) 
dz3 

− Ks 
dy(H) 
dz 

= 0 (13) 

To make differential Eq. (8) dimensionless, the following transformation can be 
used. 

ε = 
z 

H 
(14)
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Equation (15) is obtained when the transformation in Eq. (14) is applied to the 
Eq. (8). 

d4 y 

dε4 
− k2 

d2 y 

dε2 
− αy = 0 (15) 

With the aim of the reduction, the parameters in Eq. (15) are defined as follows 

k = H 

/
Ks 

(EI) 
(16) 

α = 
mH4 ω2 

(EI)h 
(17) 

The solution of the differential Eq. (15) is obtained as follows. 

y(ε) = c1 cosh(a1ε) + c2sinh(a1ε) + c3 cos(a2ε) + c4sin(a2ε) (18) 

Here, a1 and a2 are shown below. 

a1 =
/
k2 +

√
k4 + 4k2 α 
2 

(19) 

a2 = 

/
−k2 +

√
k4 + 4k2 α 
2 

(10) 

The boundary conditions given in the Eqs. (10), (11), (12) and (13) are written in 
dimensionless form as follows. 

y(0) = 0 (21) 

1 

H 

dy(0) 
dε 

= 0 (22)  

(E I  ) 
H 2 

d2 y(1) 
dε2 

(23) 

d3y(1) 
dε3 

− k2 
dy(1) 
dε

= 0 (24)  

If the non-dimensional boundary conditions are written in Eq. (18), the following 
frequency equation is obtained. 

f = [
a4 2 + k2 a2 2 + a4 1 − k2 a2 1

] + [
2a2 1a

2 
2 + k2 a2 1 − k2 a2 2

]
cosh(a1) cos(a2)
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− [−a3 2a1 + a3 1a2 − k2 a1a2
]
sinh(a1) sin(a2) 

= 0 (25) 

If the necessary arrangements are made in this frequency equation, the following 
equation is obtained. 

f = 2α + [
2α + k4

]
cosh(a1) cos(a2) + (k2 

√
α) sinh(a1) sin(a2) = 0 (26) 

After calculating α values which make the Eq. (26) zero, with the help of Eq. (17), 
the natural vibration periods are found as follows. 

Ti = Zi H
2

/
m 

h(E I  ) 
(27) 

The Zi period parameters in Eq. (27) are given in Table 1 depending on the k 
parameter for the first three modes. 

Using the frequency equation and boundary conditions, the mode shapes are found 
by the following equation. 

y = [cosh(a1ε) − cos(a2ε)] + E
[
sinh(a1ε) − 

a1 
a2 

sin(a2ε)

]
(28) 

E can be calculated by the following equation. 

E = −
[
a2 1 cosh(a1) + a2 2 cos(a2)

]

[
a2 1 sinh(a1) + a1a2 sin(a2)

] (29)

Table 1 Z values for the first three modes 

k Z1 Z2 Z3 k Z1 Z2 Z3 

0.0 1.788 0.285 0.102 11 0.328 0.103 0.056 

1.0 1.529 0.276 0.101 12 0.304 0.096 0.053 

2.0 1.160 0.254 0.098 13 0.282 0.090 0.050 

3.0 0.908 0.227 0.094 14 0.264 0.085 0.047 

4.0 0.744 0.200 0.089 15 0.248 0.080 0.045 

5.0 0.631 0.178 0.083 16 0.234 0.075 0.043 

6.0 0.547 0.160 0.078 17 0.221 0.072 0.041 

7.0 0.483 0.144 0.073 18 0.209 0.068 0.039 

8.0 0.432 0.132 0.068 19 0.199 0.065 0.037 

9.0 0.391 0.121 0.064 20 0.190 0.062 0.036 

10.0 0.357 0.111 0.060 30 0.129 0.042 0.025 
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The modal participation factor required for the Response Spectrum Analysis is 
calculated by the following equation as known from the literature [36].

[i = 
m 
h

∫ 1 
0 yi 

m 
h

∫ 1 
0 y

2 
i 

(30) 

For the i-th mode shape, the maximum displacement is calculated by the Eq. (31). 

depi = [i yi (1)Sdi  = μi Sdi (31) 

where Sdi is the displacement spectral ordinate for the i-th mode and it can be obtained 
either from the design spectrum, or from the displacement spectrum created for a 
particular earthquake record. 

The μi values given here are calculated for the first three modes and they are given 
in Table 2. 

By using the maximum displacements obtained for the three modes and with the 
help of the SRSS rule, the maximum displacements is calculated by Eq. (32). 

d =
/(

dep2 1 + dep2 2 + dep2 3
)

(32) 

For the dimensionless IDR, if the derivative of Eq. (28) is taken the following equation 
is obtained. 

1 

H 

dy(ε) 
dε 

= 
1 

H 
[a1 sinh(a1ε) + a2 sin(a2ε)] + E[a1 cosh(a1ε) − a1 cos(a2ε)] (33) 

To find the maximum value of the Eq. (33), the derivation must be taken and 
equalized to zero.

Table 2 μ displacement coefficients for the first three modes 

k μ1 μ2 μ3 k μ1 μ2 μ3 

0.0 1.57 −0.87 0.51 11 1.31 −0.51 0.37 

1.0 1.55 −0.85 0.5 12 1.30 −0.50 0.36 

2.0 1.52 −0.82 0.50 13 1.30 −0.49 0.35 

3.0 1.47 −0.77 0.48 14 1.30 −0.48 0.35 

4.0 1.43 −0.70 0.47 15 1.29 −0.47 0.34 

5.0 1.39 −0.66 0.47 16 1.29 −0.47 0.33 

6.0 1.37 −0.62 0.44 17 1.29 −0.46 0.32 

7.0 1.35 −0.59 0.42 18 1.29 −0.45 0.32 

8.0 1.33 −0.58 0.41 19 1.29 −0.45 0.31 

9.0 1.32 −0.56 0.38 20 1.29 −0.44 0.30 

10.0 1.31 −0.52 0.37 
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1 

H 

d2 yi 
dε2 

= 
1 

H

[
a2 1 cosh(a1ε) + a2 2 cos(a2ε)

] + E
[
a2 1 sinh(a1ε) + a1a2 sin(a2ε)

] = 0 
(34) 

1imax which makes the Eq. (34) equal to zero is different for three modes. For the 
1values, which make the IDR maximum in related mode, IDRs for the other modes 

are calculated by the equation below 

dri f  ti j  = [i 
1 

H

(
dyi

(
ε j max

)

dε

)

Sdi  = βi j  Sdi  i = 1, 2, 3 j = 1, 2, 3 (35) 

The β values in Eq. (35) are given in Tables 3, 4 and 5 considering the location 
of the maximum IDR in the first three modes. Also in Tables 6, 7 and 8, locations of 
maximum IDRs are given for the first three modes. 

In this case, IDR values where the maximum IDR of the related mode is located 
are calculated according to the SRSS rule for the first three modes by the following 
equations. 

dr1 =
/(

dri f  t2 11 + dri f  t2 21 + dri f  t2 31
)

(36) 

dr2 =
/(

dri f  t2 12 + dri f  t2 22 + dri f  t2 32
)

(37) 

dr3 =
/(

dri f  t2 13 + dri f  t2 23 + dri f  t2 33
)

(38) 

And eventually, the maximum IDR is obtained as the largest of these three values.

Table 3 β values for the first mode 

k β 11 β 21 β 31 k β 11 β 21 β 31 
0.0 2.161 4.155 4.025 11 1.988 1.154 0.313 

1.0 2.041 3.761 2.920 12 1.982 1.217 0.155 

2.0 1.919 1.964 1.523 13 1.997 1.285 0.009 

3.0 1.856 0.562 2.705 14 2.002 1.328 0.106 

4.0 2.065 0.083 2.359 15 1.992 1.362 0.253 

5.0 1.897 0.416 1.954 16 1.995 1.415 0.368 

6.0 1.932 0.634 1.507 17 2.001 1.441 0.469 

7.0 1.950 0.773 1.175 18 2.010 1.452 0.555 

8.0 1.956 0.938 0.913 19 2.010 1.489 0.599 

9.0 1.9820 1.036 0.653 20 2.010 1.492 0.694 

10.0 1.971 1.071 0.456
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Table 4 β values for the second mode 

k β 12 β 22 β 32 k β 12 β 22 β 32 
0.0 2.161 4.155 4.025 11 1.082 2.221 1.188 

1.0 2.032 3.984 3.919 12 1.077 2.208 1.126 

2.0 1.757 3.678 3.781 13 1.069 2.188 1.129 

3.0 1.469 3.279 3.361 14 1.061 2.159 1.251 

4.0 1.291 2.845 2.810 15 1.056 2.133 1.143 

5.0 1.184 2.645 2.385 16 1.071 2.161 1.007 

6.0 1.134 2.495 1.939 17 1.047 2.110 1.097 

7.0 1.115 2.398 1.591 18 1.055 2.083 1.086 

8.0 1.085 2.402 1.500 19 1.051 2.087 1.161 

9.0 1.077 2.360 1.292 20 1.051 1.931 1.004 

10.0 1.081 2.230 1.164 

Table 5 β values for the third mode 

k β 13 β 23 β 33 k β 13 β 23 β 33 
0.0 2.161 4.155 4.025 11 0.636 1.763 2.432 

1.0 2.032 3.984 3.999 12 0.626 1.731 2.398 

2.0 1.746 3.670 3.828 13 0.625 1.729 2.351 

3.0 1.407 3.232 3.604 14 0.646 1.762 2.368 

4.0 1.129 2.709 3.425 15 0.627 1.702 2.335 

5.0 0.934 3.116 3.245 16 0.621 1.664 2.295 

6.0 0.803 2.188 2.997 17 0.619 1.681 2.247 

7.0 0.720 2.002 2.817 18 0.627 1.654 2.265 

8.0 0.675 1.992 2.695 19 0.652 1.710 2.217 

9.0 0.640 1.901 2.514 20 0.619 1.608 2.161 

10.0 0.626 1.747 2.446

drmax = max(dr1, dr2,, dr3) (39) 

3 Equivalent Static Load Analysis by the Presented Method 

The shear wall-frame system under the triangular distributed load which represent 
the equivalent static loads is given in the Fig. 3.

In this case, the horizontal equilibrium equation is written as follows.
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Table 6 Location of the 
maximum IDR for the first 
mode 

k ε k ε 
0.0 1.0 11 0.272 

1.0 0.832 12 0.261 

2.0 0.617 13 0.249 

3.0 0.496 14 0.240 

4.0 0.430 15 0.231 

5.0 0.389 16 0.223 

6.0 0.359 17 0.215 

7.0 0.336 18 0.208 

8.0 0.316 19 0.202 

9.0 0.300 20 0.196 

10.0 0.285 30 0.152 

Table 7 Location of the 
maximum IDR for the second 
mode 

k ε k ε 
0.0 1.0 11 0.849 

1.0 1.0 12 0.845 

2.0 0.985 13 0.838 

3.0 0.971 14 0.828 

4.0 0.953 15 0.830 

5.0 0.928 16 0.830 

6.0 0.913 17 0.828 

7.0 0.898 18 0.822 

8.0 0.881 19 0.814 

9.0 0.873 20 0.824 

10.0 0.863 30 0.809 

Table 8 Location of the 
maximum IDR for the third 
mode 

k ε k ε 
0.0 1 11 0.707 

1.0 0.981 12 0.702 

2.0 0.937 13 0.699 

3.0 0.885 14 0.699 

4.0 0.833 15 0.695 

5.0 0.797 16 0.688 

6.0 0.771 17 0.693 

7.0 0.748 18 0.688 

8.0 0.737 19 0.688 

9.0 0.726 20 0.687 

10.0 0.714 30 0.671
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Fig. 3 The shear wall-frame system under the triangular distributed load

(E I  ) 
d4 y 

dz4 
− Ks 

d2 y 

dz2 
= q 

z 

H 
(40) 

The boundary conditions of Eq. (40) are  Eqs.  (10), (11), (12) and (13). 
To make the Eq. (40) dimensionless, the transform in Eq. (14) is used. 

d4y 

dε4 
− k2 

d2 y 

dε2 
= q 

H 4 

E I  
ε (41) 

The dimensionless parameter k is defined by the Eq. (16). 
Equation (43) is obtained if the following definition is made in Eq. (41). 

A = q 
H 4 

E I  
(42) 

d4 y 

dε4 
− k2 

d2 y 

dε2 
= Aε (43) 

The solution of the 4th order constant-coefficient nonhomogeneous differential 
equation in (43) is obtained as follows. 

y(ε) = c1 + c2ε + c3 cosh(kε) + c4 sinh(kε) − A 
ε3 

6k2 
(44) 

If the dimensionless boundary conditions in Eqs. (21), (22), (23) and (24) are  
applied in the Eq. (44), the displacement function is obtained as follows. 

y(ε) = S1[1 − cosh(kε)] + S2
[
ε − 

1 

k 
sinh(kε)

]
− A 

ε3 

6k2 
(45) 

Here S1 and S2 are defined as below.
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S1 = A 

⎡ 

⎣ 
1 
k2 

−
[

1 
k3 

− 1 
2k

]
sin(k) 

k2 cos(k) 

⎤ 

⎦ (46) 

S2 = A
[
1 

k4 
− 

1 

2k2

]
(47) 

In the Equivalent Static Loads Method, the following equation can be written for 
the base shear force. 

Vb = 
qH  

2 
(48) 

Equation (49) is obtained by using the Eqs. (42) and (48). 

A = 
2Vb H 3 

E I  
(49) 

With the help of Eq. (27), EI is obtained as follows. 

E I  = Z2 
1 H

4 m 

T 2 1 h 
(50) 

Equation (51) is written by using Eqs. (49) and (50). 

A = 
2VbT 2 1 h 

Z2 
1 Hm  

(51) 

The total mass of the building can be written as: 

M = 
Hm  

h 
(52) 

Equation (53) can be written by the help of Eq. (52) 

A = 
2VbT2 

1 

Z2 
1M 

(53) 

According to the Equivalent Static Loads Method, base shear force can be written 
as follows. 

Vb = Sa1 M (54) 

Here, Sa1 represents the design spectral acceleration value for the first mode. 
Equation (55) is obtained if the Eq. (54) is written in Eq. (53).
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A = 
2Sa1T2 

1 

Z2 
1 

(55) 

If the Eq. (56) is written instead of the square of the period and the Eq. (57) 
as known from the structure dynamics is written instead of the design spectral 
acceleration value, Eq. (58) is obtained. 

T 2 1 = 
4π 2 

ω2 
(56) 

Sa1 = Sd1ω2 (57) 

A = 
8π 2Sd1 
Z2 
1 

(58) 

Maximum displacement is calculated by the equation below with the help of 
Eqs. (45), (46), (47) and (58). 

y(1) = 
8π 2Sd1 
Z2 
1

[
1 
k2 −

[
1 
k3 − 1 

2k

]
sin(k) 

k2 cos(k) 
][1 − cosh(k)

]

+ 
8π 2Sd1 
Z2 
1

[
1 

k4 
− 

1 

2k2

][
1 − 

1 

k 
sinh(k)

]
− 

8π 2Sd1 
Z2 
1 

1 

6k2 
(59) 

Equation (59) can be written as below. 

y(1) = ν
(
k2

)
Sd1 (60) 

In Eq. (60), the change in ν values according to k2 is given in Table 9.
Using the displacement function in Eq. (45), IDR is found as below. 

1 

H 

dy(ε) 
dε 

= −  
1 

H 
S1[k sinh(kε)] + S2 

1 

H 
[1 − cosh(kε)] − A 

ε2 

2Hk2 
(61) 

If the derivation of the function is taken to find the location where the IDRs are 
maximum in Eq. (61), Eq. (62) is obtained. 

1 

H 2 

d2 y(ε) 
dε2 

= −  
1 

H 2 
S1

[
k2 cosh(kε)

] + S2 
1 

H 2 
[−k sinh(kε)] − A 

ε 
H 2k2 

(62) 

1values that make the Eq. (62) zero, show where the IDR is maximum. These 1 
values are calculated by Eq. (62) for different k values and given in Table 10.

By using Eqs. (46), (47) and (58) in Eqs. (61), (63) is obtained.
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Table 9 Displacement 
coefficient for the equivalent 
static loads method 

k ν k ν 
0.5 2.255 11 1.751 

1.0 2.232 12 1.734 

2.0 2.147 13 1.735 

3.0 2.057 14 1.722 

4.0 1.977 15 1.713 

5.0 1.910 16 1.703 

6.0 1.866 17 1.701 

7.0 1.829 18 1.706 

8.0 1.803 19 1.697 

9.0 1.780 20 1.687 

10.0 1.762 30 1.670

Table 10 Location of the 
maximum IDR for equivalent 
static loads method 

k ε k ε 
0.5 0.943 11 0.272 

1.0 0.817 12 0.260 

2.0 0.599 13 0.250 

3.0 0.484 14 0.240 

4.0 0.422 15 0.231 

5.0 0.384 16 0.223 

6.0 0.356 17 0.216 

7.0 0.334 18 0.209 

8.0 0.315 19 0.202 

9.0 0.299 20 0.196 

10.0 0.285 30 0.153

1 

H 

dy(ε) 
dε 

= −  
1 

H 

8π 2Sd1 
Z2 
1

[
1 
k2 −

[
1 
k3 − 1 

2k

]
sin(k) 

k2 cos(k)

]

[k sinh(kε)] 

+ 
1 

H 

8π 2Sd1 
Z2 
1

[
1 

k4 
− 

1 

2k2

]
[1 − cosh(kε)] − 

8π 2Sd1 
Z2 
1 

ε2 

2Hk2 
(63) 

If 1= 1max is written in Eq. (63), the maximum IDR can be obtained as below. 

1 

H 

dy(ε) 
dε 

= 
η
(
k2

)
Sd1 

H 
(64) 

The η values given in Eq. (64) are calculated and presented in Table 11 depending 
on k2
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Table 11 Coefficient of the 
maximum IDR for the 
equivalent static loads method 

k η k η 
0.5 3.036 11 2.609 

1.0 2.907 12 2.596 

2.0 2.666 13 2.607 

3.0 2.593 14 2.595 

4.0 2.592 15 2.587 

5.0 2.599 16 2.574 

6.0 2.613 17 2.576 

7.0 2.617 18 2.586 

8.0 2.620 19 2.574 

9.0 2.615 20 2.561 

10.0 2.609 30 2.542 

4 Contribution of the Axial Deformation 

In the presented method, the effect of axial deformations can be approximately taken 
into account with the approach known from the literature [12]. To this end, KSa is 
written instead of KS and it is calculated by the following equation [12]. 

Ksa = r Ks (65) 

Here, r is correction coefficient and it is found with the help of the equation below. 

r = T 2 s1 

T 2 s1 + T 2 a1 

(66) 

T 2 s1 = 16H 2 m 

hKs 
(67) 

T 2 a1 = 3.195H 4 m 

hD  
(68) 

D is the global axial stiffness and it is calculated using the following equation. 

D = E 
p∑

i=1 

Aci t
2 
i (69) 

Aci is the plan area of the i-th column, ti shows the distance of the column to the 
center of gravity in the plan.
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5 Numerical Examples 

In order to investigate the convergence of the presented method to the Finite Element 
Method, two examples were solved by the presented method and the results were 
compared with ETABS. 

One of the examples was a 7-storey reinforced concrete structure consist of frames, 
whereas the second example was a reinforced concrete structure having 15-storey 
shear wall-frame system. 

5.1 Example 1 

7-storey reinforced concrete structure of which the bearing system consists of frames, 
given in Fig. 4 was analyzed by using the presented method in this study. For this 
purpose, both the Equivalent Static Loads Method and Response Spectrum Analysis 
were applied to the example. The results obtained by the presented method were 
compared with the ones obtained by ETABS. 

The height of each storey was 3 m. All columns were 45 cm/45 cm, beams were 
25 cm/50 cm and the modulus of the elasticity is 32,000 Mpa. The mass of the storeys 
were taken as 748,800 kg. The structure was considered in the second seismic zone, 
local site class Z3 and the seismic load reduction factor was eight for the analysis 
according to Turkish Earthquake Code. 

The comparisons of the presented method and ETABS for the values of maximum 
displacement and the maximum IDR obtained for the Equivalent Static Loads Method 
were given in Table 12.

As shown in Table 12, the ratio of the maximum difference between the proposed 
method and ETABS is 9.52%

Fig. 4 Plan of the frame 
system 
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Table 12 The values of 
maximum displacement and 
the maximum IDR obtained 
for the equivalent static loads 
method (Example 1) 

Equivalent static loads method 

ETABS Presented method 

Max displacement (m) 0.0208 0.0205 

Max IDR 0.001344 0.001472

Table 13 The values of 
maximum displacement and 
the maximum IDR obtained 
for the Response Spectrum 
Analysis (Example 1) 

Response spectrum analysis 

ETABS Presented method 

Max displacement (m) 0.0165 0.0156 

Max IDR 0.00112 0.001139 

The comparisons of the presented method and ETABS for the values of maximum 
displacement and the maximum IDR obtained for the Response Spectrum Analysis 
were given in Table 13. 

As it is seen in Table 13, the maximum error according to the solutions by the 
Response Spectrum Analysis is 5.45%. 

5.2 Example 2 

15-storey reinforced concrete shear wall-frame structure seen in Fig. 5 was analyzed 
for the y direction by performing both the Equivalent Static Loads Method and the 
Response Spectrum Method. The results of the presented method and ETABS were 
compared. 

Fig. 5 Plan of the shear wall 
frame system
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Table 14 Comparison of 
natural vibration periods for 
the first three modes 
(Example 2) 

Periods (In Y Direction) 

Mode ETABS Presented method 

1 0.749 0.772 

2 0.196 0.183 

3 0.089 0.073 

Table 15 The values of 
maximum displacement and 
the maximum IDR obtained 
for the equivalent static loads 
method (Example 2) 

Response spectrum analysis 

ETABS Presented method 

Max displacement (m) 0.0299 0.03175 

Max IDR 0.000812 0.000883 

The height of each storey was 3 m, columns were 65 cm/65 cm and beams were 
30 cm/60 cm, thickness of the shear wall, which was modeled by shell elements in 
ETABS was 50 cm. The modulus of the elasticity was 33,000 Mpa and the mass of 
the storeys were taken as 760,000 kg. The structure was considered in the second 
seismic zone, local site class Z3 and the seismic load reduction factor was six for the 
analysis according to Turkish Earthquake Code. 

The comparison of the first three periods calculated for the structure was given in 
Table 14. 

The comparison of the maximum displacement and the maximum IDR for 
Equivalent Static Loads Method was given in the Table 15. 

It was seen that, in the analyzes made, both by the presented method and by 
ETABS the maximum IDR was occurred on the 8th floor level. 

The maximum error in the results obtained by the Equivalent Static Loads Method 
was %8.74. 

The comparisons of the maximum displacement and the maximum IDR results 
of two method obtained by the Response Spectrum Analysis were given in Table 16. 

The maximum error in the results obtained by the Response Equivalent Static 
Loads Method was %9.16. Maximum IDR was occurred on the 8th floor level by the 
analysis made by the presented method and by ETABS.

Table 16 The values of 
maximum displacement and 
the maximum IDR obtained 
for Response Spectrum 
Analysis (Example 2) 

Response spectrum analysis 

ETABS Presented method 

Max displacement (m) 0.02086 0.0225 

Max IDR 0.000575 0.000633 
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6 Conclusions 

In this study, a method to determine the maximum displacement and the maximum 
interstory drift ratios by using tables has been proposed for the static and dynamic 
analysis of regular reinforced structures. By the method results of the analyses easily 
and quickly achieved. It has been observed that the Presented Method gave sufficient 
results with the Finite Element Method considering the examples that were solved at 
the end of the study. The approximation of the method is due to the approximation of 
the determination of the shear stiffness equation and the approximation of the axial 
deformations. Consequently, the proposed method can be used during the preliminary 
stage. Also, the method gives an idea about the behavior of the structure. 

References 

1. Chitty L (1947) On the cantilever composed of a number of parallel beams interconnected by 
cross bars. Philos Mag Londn Ser 7(38):685–699 

2. Rosman R (1964) Approximate analysis of shear walls subject to lateral loads. Proc Am 
Concrete Inst 61(6):717–734 

3. Rutenberg A, Heidebrecht AC (1975) Approximate analysis of asymmetric wall-frame 
structures. Build Sci 10(1):731–745 

4. Murashev V, Sigalov E, Baikov VN (1976) Design of reinforced concrete structures. Mir 
Publishers, Moscow 

5. Basu AK, Nagpal AK, Kaul S (1984) Charts for seismic design of frame-wall systems. J Struct 
Eng ASCE 110(1):31–46 

6. Smith BS, Crowe E (1986) Estimating periods of vibration of tall building. J Struct Div ASCE 
112(5):1005–1019 

7. Smith BS, Yoon YS (1991) Estimating seismic base shears of tall wall-frame buildings. J Struct 
Eng ASCE 117(10):3026–3041 

8. Mancini E, Savassi W (1999) Tall building structures unified plane panels behavior. Struct Des 
Tall Build 8:155–170 

9. Ng SC, Kuang JS (2000) Triply coupled vibration of asymmetric wall–frame structures. J Struct 
Eng ASCE 126(8):982–987 

10. Wang Y, Arnaouti C, Guo S (2000) A simple approximate formulation for the first two frequen-
cies of asymmetric wall–frame multi-storey building structures. J Sound Vib 236(1):141–160 

11. Swaddiwudhipong S, Lee SL, Zhou Q (2001) Effect of axial deformation on vibra-tion of tall 
buildings. Struct Des Tall Build 10:79–91 

12. Zalka KA (2001) Simplified method for calculation of the natural frequencies of wall–frame 
buildings. Eng Struct 23(12):1544–1555 

13. Hoenderkamp JCD (2002) Simplified analysis of asymmetric high-rise structures with cores. 
Struct Des Tall Build 11(2):93–107 

14. Miranda E, Reyes CJ (2002) Approximate lateral drift demands in multistory buildings with 
nonuniform stiffness. J Struct Eng ASCE 128(7):840–849 

15. Tarján G, László PK (2004) Approximate analysis of building structures with identical stories 
subjected to earthquakes. Int J Solids Struct 41(5–6):1411–1433 

16. Miranda E, Akkar SD (2006) Generalized interstory drift spectrum. J Struct Eng ASCE 
132(6):840–852 

17. Clive LD, Harry EW (2007) Estimating fundamental frequencies of tall buildings. J Struct Eng 
ASCE 133(10):1479–1483



28 K. B. Bozdogan and D. Ozturk

18. Georgoussis GK (2007) Approximate analysis of symmetrical structures consisting of different 
types of bents. Struct Des Tall Spec Build 16(3):231–247 

19. Meftah SA, Tounsi A, El Abbas AB (2007) A simplified approach for seismic calculation of 
a tall building braced by shear walls and thin-walled open section structures. J Eng Struct 
29(10):2576–2585 

20. Laier JE (2008) An improved continuous medium technique for structural frame analysis. 
Struct Design Tall Spec Build 17(1):25–38 

21. Rafezy R, Howson WP (2008) Vibration analysis of doubly asymmetric, three-dimensional 
structures comprising wall and frame assemblies with variable cross-section. J Sound Vib 
318(1–2):247–266 

22. Bozdogan KB (2009) An approximate method for static and dynamic analyses of symmetric 
wall-frame buildings. Struct Design Tall Spec Build 18(3):279–290 

23. Takabatake H (2010) Two-dimensional rod theory for approximate analysis of building 
structures. Earthq Struct 1(1):1–19 

24. Bozdogan KB (2011) A method for lateral static and dynamic analyses of wall-frame buildings 
using one dimensional finite element. Sci Res Essays 6(3):616–626 

25. Wdowicki J, Wdowicka E (2012) Analysis of shear wall structures of variable cross section. 
Struct Des Tall Spec Build 21(1):1–15 

26. Son HJ, Park J, Kim H, Lee HY, Kim DJ (2017) Generalized finite element analysis of high-rise 
wall-frame structural systems. Eng Comput 34(1):189–210 

27. Stafford, Smith B, Kuster M, Hoenderkainp CD (1984) Generalized method for estimating 
drift in high-rise structures. J Struct Eng ASCE 110(7):1549–1562 

28. Heidebrecht AC, Rutenberg A (2000) Applications of drift spectra in seismic design. In: 
Proceedings of 12WCEE, Auckland, NZ, New Zealand Society for Earthquake Engineering, 
Paper No. 209 

29. Gülkan P, Akkar S (2002) A simple replacement for the drift spectrum. Eng Struct 24(11):1477– 
1484 

30. Xie J, Wen Z (2008) A measure of drift demand for earthquake ground motions based on 
Timoshenko beam mode. In: The 14th world conference on earthquake engineering, Beijing, 
China 

31. Khaloo AR, Khosravi H (2008) Multi-mode response of shear and flexural buildings to pulse-
type ground motions in near-field earthquakes. J Earthq Eng 12(4):616–630 

32. Yang D, Pan J, Li G (2010) Interstory drift ratio of building structures subjected to near-fault 
ground motions based on generalized drift spectral analysis. Soil Dyn Earthq Eng 30(11):1182– 
1197 

33. Fardipour M, Lumantarna E, Lam N, Wilson J, Gad E (2011) Drift demand predictions in low 
to moderate seismicity regions. Aust J Struct Eng 15(3):195–206 

34. Shodja AH, Rofooei FR (2014) Using a lumped mass, nonuniform stiffness beam model to 
obtain the interstory drift spectra. J Struct Eng ASCE 140(5) 

35. Tekeli H, Atimtay E, Turkmen M (2015) An approximation method for design applications 
related to sway in RC framed buildings. Int J Civil Eng Trans A: Civil Eng 13(3):321–330 

36. Chopra AK (2015) Dynamics of structures: theory and applications to earthquake engineering. 
Prentice Hall, Englewood Cliffs



A Hand Method for Assessment of Maximum IDR and Displacement … 29

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made. 

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	 A Hand Method for Assessment of Maximum IDR and Displacement of RC Buildings
	1 Introduction
	2 Response Spectrum Analysis by the Presented Method
	3 Equivalent Static Load Analysis by the Presented Method
	4 Contribution of the Axial Deformation
	5 Numerical Examples
	5.1 Example 1
	5.2 Example 2

	6 Conclusions
	References




