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EFFECT OF THE HARTMANN NUMBER ON MHD

STOKES FLOW IN A LID-DRIVEN CAVITY
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Çanakkale Onsekiz Mart University, Department of Computer Technologies, Çanakkale, Turkey

A two-dimensional steady, incompressible and electrically conducting Stokes flow in a lid-driven
rectangularly confined region is considered. A boundary value problem is formulated for a cavity
with the upper lid moving with a constant velocity (u=1) and the lower lid moving with an S
velocity. The finite difference method is applied to generate solutions for the governing equations
of the flow in the region. Moreover, streamline bifurcation under a magnetic field of different
strengths applied in the x- or y-direction and the effect of the Hartmann number on the eddy
formation are investigated.

Introduction.

Magnetohydrodynamics (MHD) is a popular research field in fluid mechanics that
has several important applications in engineering and industry. Some of these include
MHD accelerators and generators, space propulsion, electromagnetic pumps, cooling sys-
tems with liquid metals, etc. MHD examines the motion of electrically conducting fluids
under a magnetic field in a cavity with a moving lid. Along with the slipping wall, the
magnetic field directs the flow and can control the flow motion.

Many numerical methods have been developed to solve the governing equations of
MHD flow in different configurations of interest. Some of them are the boundary element
method (BEM) [1–4], the finite element method (FEM) [5–8] and the method of radial
basis function collocation [9, 10]. Additionally, the finite difference method (FDM) that
gives influential results in the solution of the boundary value problem is also applied.
Sterl [11] used the finite difference code to analyzed the behavior of MHD flows at high
Hartmann numbers in a two-dimensional (2D) square duct by investigating the influence
of the Hartmann number M, wall conductance ratio c and varying magnetic field. Hsieh et
al. [12] proposed an improvement of the finite difference method, called the tailored finite
point method, and solved the steady MHD duct flow problems with a high Hartmann
number. Using the finite difference method, Chutia and Deka [13] investigated a steady
two-dimensional (2D) MHD flow through a square duct under the action of a transverse
magnetic field acting with an inclination to the duct walls. Arslan and Tezer-Sezgin [14]
considered an MHD flow in a long channel along the z-axis under an external magnetic
field which was perpendicular to the channel axis and demonstrated the effects of the
Hartmann number, conductivity parameter and slip length on the behavior of both the
velocity and the induced magnetic field using FDM.

The coupling of the continuity equation, the Navier–Stokes equations of hydro-
dynamics and the Maxwell electromagnetic equations governs the MHD flow. In this
study, some physical assumptions have been made, such as the high viscous flow (Re ≪

1) and the negligible magnetic field (Rm ≪ 1) in the fluid. This is a Stokes approxima-
tion and it is going to be called as MHD Stokes. Gürbüz and Tezer-Sezgin [15] solved the
MHD Stokes flow equations in a lid-driven cavity and in a backward-facing step channel
exposed to a uniform magnetic field. In the cavity, they found that with the increase of
the Hartmann number, the boundary layers were formed closer to the moving lid and
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secondary recirculation appears in the rest of the cavity. Okechi et al. [16] considered an
MHD flow through a wavy-curved channel filled with an electrically conducting fluid and
investigated the effects of the wavy boundaries, channel radius of curvature and applied
magnetic field on the flow. Okechi and Asghar [17] also modelled a flow through a cor-
rugated curved channel and assumed that the flow was perpendicular to the corrugations
in the presence of a magnetic field. Gürbüz and Tezer-Sezgin [10] obtained numerical
results for a constricted enclosure under the effect of a magnetic field with several values
of the Hartmann number and constriction ratio.

Cavity type flow problems are used to analyze the flow behavior as well as a bench-
mark of the developed numerical methods. Shankar [18] considered the Stokes flow in
a rectangular 2D cavity in which the flow was driven by the upper lid. He focused on
the eddy pattern in the cavity and examined the relationship of the corner eddies with
the main eddy using an analytical method. Kelmanson and Lonsdale [19] presented an
integral-equation method and applied it to the lid-driven-cavity eddies, two of which
were moving opposite to each other with a distinct velocity. They observed a variety of
topologically distinct flow patterns with variations in the wall velocity. Gürcan et al. [20]
investigated the Stokes flow in a rectangular driven cavity of depth 2H and width 2L,
where the two lids moved in opposite directions with velocities U1 and U2, respectively.
They set-forth a new class of flow patterns with respect to the variation of the aspect
ratio A=H/L and velocity ratio S=U1/U2 and constructed a control space diagram (S,
A) to reveal the interaction of these patterns. Gürcan [21] also found the effect of the
Reynolds number (Re) on the streamline patterns and their bifurcations in a double-lid-
driven cavity with free surfaces. Streamline topology and eddy genesis in cavities with
different geometric shapes can be found in [22–25].

In this paper, we analyze the flow bifurcation of the MHD Stokes flow in a rectangular
cavity exposed to a uniform magnetic field. The flow motion can be controlled with the
help of two parameters, such as the height of the region h and the strength of the magnetic
field M . The motivation behind this study is that the behavior of the Stokes flow in the
presence of a uniform magnetic field has not been qualitatively investigated yet. We work
on coupled governing equations and compute them iteratively using the FDM, which is a
classical approach and has proven to be very efficient in terms of both programming and
low computational costs. The main goal of this work is to introduce a mechanism for
flow transformations in the flow domain as h varies with differentHartmannnumbersM.

1. Problem formulation and boundary values.

It is assumed that the electrically conducting fluid in a rectangular cavity is steady,
incompressible and viscous. The flow interacts with the external applied magnetic field
imposed horizontally or vertically. h is the parameter of the height of the region, whose
width is constant starting from the origin. The cavity has two stationary side walls, two
moving lids, namely, the upper lid that has a constant velocity u=1 and the lower lid
moving with the velocity u=S. Here, three different cases of S will be examined, i.e.
S=–1, 0, 1. The setup of the 2D flow problem is shown in Fig. 1.

The non-dimensional MHD equations are given as

∇ · u = 0, (1)

Re (u · ∇)u = −∇p+∇
2u+M2 (−∇φ+ u×H)×H, (2)

Rm (−∇φ+ u×H) = ∇×H, (3)

where u=(u, v, 0), H=(Hx, Hy, Hz), p, J and φ are, respectively, the fluid velocity, the
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Fig. 1. Schematic of the flow problem and boundary values.

magnetic field, the fluid pressure, the electric current density and the electric potential.
Since we assume the negligibility of the induced magnetic field (Rm ≪ 1), Eq. (3) will
no longer be used for the solution procedure. The Stokes approximation requires small
values of the Reynolds number, so the MHD Stokes flow equations can be derived by
omitting the convective terms in Eq. (2) as follows,

∇ · u = 0, (4)

0 = −∇p+∇
2u+M2 (−∇φ+ u×H)×H. (5)

Since it is assumed that the magnetic field is applied horizontally or vertically, the Laplace
equation for the electric potential (∇2φ=0) is derived from the Ohm’s law and conser-
vation of the electric current ∇ · J =0. With uniform boundary conditions, the solution
becomes the zero electric potential, φ=0, by omitting the gradient of the electric poten-
tial in Eq. (5), ∇φ=0.

For the magnetic field imposed on the flow region in the x-direction, H0=(1, 0, 0),
the governing Eqs. (4)–(5) are modified as

∂u

∂x
+
∂v

∂y
= 0, (6)

∇
2u =

∂p

∂x
, (7)

∇
2v =

∂p

∂y
+M2v. (8)

In the 2D incompressible flow, a stream function/vorticity formulation can be derived
by introducing the stream function ψ and the vorticity ω from the following relations

u =
∂ψ

∂y
, v = −

∂ψ

∂x
, ω =

∂v

∂x
−
∂u

∂y
. (9)
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It is clear that we derive the Poisson equation for the stream function as ∇2ψ=−ω.
By cross-differentiating Eqs. (7) and (8), the vorticity Poisson equation is derived as
∇2ω=M2∂v/∂x. Thus, the governing equations for the MHD Stokes flow are given for
the primitive variables ψ, ω as

∇
2ψ = −ω,

∇
2ω = M2 ∂v

∂x
.

(10)

Similarly, since H0 =(0, 1, 0) for the magnetic field in the y-irection, Eq. (5) takes
the form

∇
2v =

∂p

∂y
, ∇

2u =
∂p

∂x
+M2u, (11)

which yields the following Poisson-type system of equations

∇
2ψ = −ω,

∇
2ω = −M2 ∂u

∂y
.

(12)

From the no-slip conditions of the stationary and sliding wall, the corresponding
boundary conditions of Eqs. (10)–(12) are written in terms of the velocity and stream
function as follows:
(a) ψ=const= 0 at all boundaries:

ψ(0, y) = ψ(1, y) = ψ(x, 0) = ψ(x, h) = 0 (13)

(b) No-slip on the upper and lower lids:

u =
∂ψ

∂y
(x, h) = 1, u =

∂ψ

∂y
(x, 0) = S, (14)

(c) and on the side walls:

v =
∂ψ

∂x
(0, y) =

∂ψ

∂x
(1, y) = 0. (15)

Since the boundary conditions are known in terms of velocity components, the
boundary values of the only non-vanishing vorticity component can be derived in terms
of the stream function. It is known that ∇2ψ=−ω, so

ω = −
∂2ψ

∂x2
−
∂2ψ

∂y2
≡ −

∂u

∂y
+
∂v

∂x
. (16)

No-penetration boundary conditions require that the component of the velocity normal
to the walls is zero. Enforcing the boundary conditions for the velocity, for example,
v=0 and thus ∂v/∂x = 0 over the top and bottom yields

ω = −
∂u

∂y
= −

∂ψ2

∂y2
. (17)

In a similar fashion, the relation for the boundary value at the side walls is derived as

ω =
∂v

∂x
= −

∂ψ2

∂x2
. (18)
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Fig. 2. A finite difference grid used to calculate the lid-driven cavity flow under a magnetic
field.

2. Numerical solution.

The governing equations (10)–(12) given in Chapter 1 have no analytical solution un-
less it is known. Therefore, the finite difference method was used to solve these equations
with the corresponding boundary conditions (13)–(15). In this section, a finite difference
formulation of the system (10) is presented, and similar operations can be performed for
those in Eq. (12).

The flow domain is gridded uniformly, as shown in Fig. 2. The central difference
of second-order partial derivatives with respect to x and y is used to approximate the
solution:

(

∂2φ

∂x2

)

i,j

≃
φi−1,j − 2φi,j + φi+1,j

∆x2
,

(

∂2φ

∂y2

)

i,j

≃
φi,j−1 − 2φi,j + φi,j+1

∆y2
. (19)

The discrete form of Eqs. (10) for the stream function and vorticity is

ψi+1,j − 2(1 + β)ψi,j + ψi−1,j + βψi,j+1 + βψi,j−1 +∆x2ωi,j = 0, (20)

ωi+1,j − 2(1 + β)ωi,j + ωi−1,j + βωi,j+1 + βωi,j−1 +∆x2Ni,j = 0, (21)

using the approximation (19), where β = (∆x/∆y)
2
and Ni,j is the non-uniform term of

the vorticity equation in Eqs. (10).
The Taylor series expansion of the stream function is used to evaluate the boundary

values of the vorticity. So, for example, considering the expansion at the grid node just
below the top lid yields

ψi,Ny
≃ ψi,Ny+1

−∆y

(

∂ψ

∂y

)

i,Ny+1

+
1

2
∆y2

(

∂2ψ

∂y2

)

i,Ny+1

. (22)

It is known that
(

∂ψ

∂y

)

i,Ny+1

= 1 and ωi,Ny+1 = −

(

∂2ψ

∂y2

)

i,Ny+1

,
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then, solving for ωi,Ny+1 yields

ωi,Ny+1 = 2
ψi,Ny+1

− ψi,Ny

∆y2
− 2

1

∆y
.

We can evaluate the values of the vorticity by a similar approach using

ω1,j = 2
ψ1,j − ψ2,j

∆x2
, ωNx+1,j = 2

ψNx+1,j − ψNx,j

∆x2
(23)

at the side wall, and

ωi,1 = 2
ψi,1 − ψi,2

∆y2
− 2

S

∆y

at the bottom lid. In the implementation, the coupled MHD Stokes equations (10) with
a subject boundary condition are solved iteratively by using their discretized form in
Eqs. (20)–(21). To obtain a more accurate solution, a third-order Taylor series expansion
was applied to Eq. (22). Also, to improve the rate of convergence, e.g., for the stream
function, ψl+1

i,j = ψl
i,j + δ[2(1 + β)]−1Rl

i,j is used, where the relaxation factor δ=0.5

and Rl
i,j is the value of the residual at the k-th iteration. The computational process

is continued until a difference between the consecutive values of the solution is obtained
within the preassigned tolerance ε = 10−9. Numerical solutions were performed using
the Matlab programming [26].

3. Results and discussions.

The effect of the magnetic field applied to a rectangular region from both the y-
direction and the x-direction on the streamline is investigated. When Eqs. (10) and (12)
are examined, it is seen that the flow is Stokes-like if the Hartmann number is M=0.
Two parameters controlling the flow in the region are the depth of the cavity and the
Hartmann number. The flow bifurcates at the degenerate critical point with varying
parameters, namely, the type or the number of stationary point changes. We use the
term flow bifurcation to describe such changes in configuration.

(a) (b) (c) (d)

Fig. 3. Streamline patterns for M=10 and S=–1 obtained by FDM in a 40× 40 grid: (a) h=1.0,
(b) h=1.6, (c) h=1.65, (d) h=1.75.
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(a) (b) (c)

Fig. 4. Streamline patterns for M=10 and S=0 obtained by FDM in a 40× 40 grid: (a) h=0.95,
(b) h=1.05, (c) h=1.1.

Table 1. Comparison of h values at which the flow pattern changes in the cavity at S= –1.

M=0 (FDM) M=0 ([20]) M=10

hB.M =2.53 hB.M =2.498 hB.M =1.52
hG.B =2.81 hG.B =2.789 hG.B =1.64
hC.B =2.93 hC.B =2.91 hC.B =1.70

3.1. Results on the magnetic field acting in the x-direction. In this section, the
effect of the magnetic field acting in the x-direction on the streamlines and new eddy
formation in the region was examined at S=−1, 0.1. Fig. 3 illustrates a sequence of
flow patterns for M=10 and S=−1 (i.e. the lids moving with an equal velocity but in
opposite directions).

As shown in Fig. 3, there is a separatrix with a saddle at the center of the region and
two centers symmetrical with respect to the point (0.5, 0.5) for M=10 and h=1. Two
degenerate critical points appear on the two side walls at a critical value of hB.M =1.52
and then separation bubbles emerge on them. As the height of the cavity gradually
increases, the side eddies grow up together and approach the saddle point at the center
of the field. A global bifurcation arises at hG.B=1.64 which involves the formation of
two saddle-point triangles as a result of the different saddle-saddle connections. At the
critical value hC.B=1.7, the number of eddies increases to three when the separatrix
between the lower and upper center turns into the complete eddy.

It is seen that this bifurcation sequence obtained for M=10 is the same for M=0.
The h values at which bifurcation occurs for M=0 and M=10 are summarized in Table 1.
When comparing these values, it can be easily seen that the Hartmann number causes a
decrease in the height values. While the flow topology does not change until h=2.5 for
M=0, the new eddy formation is completed at h=1.7 for M=10.

A rectangular domain with the upper lid-driven S= 0 and M=10 was considered.
A series of bifurcations that occur at the stagnation points with the enlargement of the
cavity’s length is shown in Fig. 4. There is a single eddy with its center-line and two
corner eddies in the flow. As h increases, the corner eddies grow in size and at h=1 these
two eddies undergo a saddle-point bifurcation at the midpoint of the lower wall. Thus,
the critical points on the wall pass into the flow and the number of stationary points of
the region increases. As h increases, the saddle point shifts towards the center of the
cavity, while the lower eddies continue to get closer, forming the second complete eddy
within the cavity at h=1.7. This transformation in streamlines was observed in cavites
of different shapes and was the same as for M=0. The h values at which the structural
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(a) (b) (c) (d)

Fig. 5. Streamline patterns for M=10 and S=1 obtained by FDM in a 50× 50 grid: (a) h=1.0,
(b) h=1.95, (c) h=2.0, (d) h=2.15.

Table 2. Comparison of h values at which the flow pattern changes in the cavity at S=0.

M=0 (FDM) M=0 M=10

Second vortex [18]
hS.N =1.65 hS.N =1.62975 hS.N =1.0
hC.B =1.8 hC.B =1.8 hC.B =1.08

Third vortex [27]
hS.N =3.06 hS.N =3.028 hS.N =1.83
hC.B =3.23 hC.B =3.202 hC.B =1.91

transformations occurred at stagnation points for the second or even for the third vortex
are listed in Table 2 for M=0 and M=10.

As h increases with S= 1, at which the lids move in the same direction, there arise
three different bifurcations in the critical value hB.M, hG.B, hC.B. From h=1 to h=1.87,
the flow contains a separation line (ψ=0) that divides the flow field in halves with
two symmetrical main eddies. At hBM =1.87, symmetrically located separation bubbles
appear on the side walls of the cavity. These bubbles approach each other as h increases
gradually and coalesce in the middle of the field at hG.B=1.99 to produce a separatrix
with a saddle point and two centers. These center points get closer to become a center
simultaneously with the saddle point at hC.B =2.07. There are now four fully developed
vortices in the cavity. As seen in Table 3, with the effect of the Hartmann number, the
full vortex formation was completed at h=3.45 for M=0, while this value decreased
considerably to h=2.07 for M=10.

It is clear that the magnetic field applied in the x-direction did not cause a change
in the pattern of the stagnation point in the cavity. Also, interestingly, the symmetrical
nature of the streamlines at M=0 was preserved at M=10. However, it had a significant
effect on the full vortex formation such that the corresponding bifurcations for S=−1, 0, 1
with M=0 arose at a lower cavity height when M=10.
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Fig. 6. Flow patterns in the region exposed to the y-directed magnetic field for (a) S= –1,
(b) S= 0, (c) S= 1.

Table 3. Comparison of h values at which the flow pattern changes in the cavity at S= –1.

M=0 (FDM) M=0 ([28]) M=10

hB.M =2.98 hB.M =2.934 hB.M =1.87
hG.B =3.26 hG.B =3.225 hG.B =1.99
hC.B =3.45 hC.B =3.400 hC.B =2.07

3.2. Results on the magnetic field acting in the y-direction. In this subsection,
the changes in the streamline topology under the y-directed magnetic field are examined
for different Hartmann numbers. First, let us examine the streamlines at different
Hartmann numbers for h=1. The solution of Eq. (12) is plotted for S=−1, 0.1 with
M=10, 30, 50, 80, and the flow patterns are shown in Fig. 6. One effect of the Hartmann
number at S=−1 is to disrupt the symmetry of the flow pattern for M=0. Indeed, at
M=10, the center point above the saddle at (0.5, 0.5) gets closer to the saddle point
with increasing Hartmann number, resulting in a cusp bifurcation, and turns into a full
vortex. Because of the further increase of the Hartmann number, the velocity of the flow
slows down considerably (see the center-line velocity profile in Fig. 7a). Accordingly, the
center point lying on x=0 gets closer to the bottom lid and turns into a saddle point,
which is the pitchfork bifurcation.

In the case of S= 0, the corner vortices have become too small to be affected by the
magnetic field. As M increased, the center point on x=0 bifurcated into the center and
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Fig. 7. Flow patterns in the region exposed to the y-directed magnetic field for (a) S= –1,
(b) S= 0, (c) S= 1.

thus new stagnation points were produced, as with S=−1. While there was a velocity
of the flow in front of the lid because of the movement, the flow became stagnant in the
rest of the enclosure under the effect of the magnetic field and this caused the streamline
to accumulate in front of the lid, see the graph of u at (0.5, y).

When the flow patterns were examined with the v(x, 0.5) velocity profile for S=1,
it was observed that the separation line at y=0.5 moved upwards under the effect of
the Hartmann number and broke the symmetry of the cavity. Two center points located
symmetrically along x=0.5 turned into a saddle with two centers, one on each side, as
M gradually increased. The upward movement of the separation line caused the flow to
be trapped between the lid and itself. Hence, the same bifurcation arises in the central
zone and produces a separatrix enclosing three sub-eddies.

Streamlines for M=10 and h=5 are plotted in Fig. 8. There is no difference in
the flow patterns determined by M=0. Indeed, with the increase of the cavity size, the
corner eddies do not grow at S=0 and the separation bubbles do not appear at S=−1
and S=1. Therefore, the bifurcation sequences for M=0 did not occur, and we observed
no new vortex formation.

4. Conclusion.

In this study, the streamline behavior of the MHD Stokes flow in a rectangular region
with the upper lid and the lower lid moving with S=−1, 0, 1 has been analyzed using
a numerical method. The finite difference method was applied to obtain flow patterns
throughout the region because it could solve such system of coupled equations without
decoupling the equations and provided efficient results.

As the presence of the magnetic field in the x-direction did not cause a change in the
bifurcation types in the cavity, a significant decrease was observed for the height values
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Fig. 8. Flow patterns for M=10 and h=5 under the magnetic field directed vertically.

at which the eddies completed their evolution. The Hartmann number had a different
effect on the flow characteristics when the flow direction and the direction of the magnetic
field were perpendicular to each other. By examining the center-line velocity profiles,
especially u, it has been found that the flow slows down under the effect of the Hartmann
number and tends to flatten, so it accumulates in front of the sliding lid. It is surprising
that when the magnetic field acted in the y-direction, the streamline topology remained
the same regardless of the length of the region (up to h=5).
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[9] M.Tezer-Sezgin and M.Gürbüz. Mhd convection flow in a constricted channel.
Analele Stiintifice ale Universitatii Ovidius Constanta, Seria Matematica, vol. 26
(2018), no. 2, pp. 267–283.
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