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1. Introduction
Nitrogen containing heterocyclic compounds have a great interest within the field of pharmaceutical chemistry and 
drug industry due to their strong and selective hydrogen bonds with protein/enzyme moieties, which are responsible for 
important biological activities [1-3]. Imidazole moieties are privileged structures in today’s medicinal chemistry.  Also, 
multisubstituted imidazoles exhibit good pharmaceutical properties such as antibacterial [4], antioxidant [5], anticancer 
[3], antifungal [5], p38α MAP kinase inhibitor [6], B-Raf kinase inhibitor [7] etc. [8-11]. In addition, imidazole derivatives 
are used as ionic liquids which are nonvolatile and clean solvents in green chemistry, and materials for energy-based areas 
[12]. Some APIs such as losartan, eprosartan, and olmesartan are well-known substituted imidazoles, which are used, in 
the treatment of especially high blood pressure (hypertension), indirectly diabetic kidney disease and heart failure and also 
trifenagrel drug uses, as arachidonate cyclooxygenase inhibitor [1,13-15] (Fig. 1).

On the other hand, imidazo[1,2-a]pyrimidines are an important  fused heterocyclic class, which shows significant 
biological properties such as antiinflammatory [16], cardiovascular [17], anticancer [18,19], antimicrobial [19], p38 MAP 
kinase inhibitors [20], HIV-1 inhibitor [21], and so on [22,23]. Some of the most successful imidazo[1,2-a]pyrimidine-
containing  APIs are fasiplon, taniplon, and divaplon, which show anxiolytic and anticonvulsant effects [24-26] (Fig. 
1). Also, our group has previously reported the synthesis and characterization of some imine and pyran derivatives of 
imidazo[1,2-a]pyrimidine and biological studies on these structures are ongoing [27,28]. Hence, to incorporate these two 
nitrogen containing heterocycles, imidazole and imidazo[1,2-a]pyrimidine, can contribute to obtaining a new class of 
compounds that may have good biological and medicinal properties. Some of the reported biologically potent imidazole 
and imidazo[1,2-a]pyrimidine derivatives were given in Figure 1 [18,19].

Various synthetic methodologies were developed to obtain 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazole 
derivatives by numerous scientists. One of the most studied methodology is one-pot multicomponent reactions of 
1,2-diketone/α-hydroxyketone, primary amines, benzil, and ammonium acetate in the presence of catalysts of different 
properties such as acidic/basic/neutral, homogeneous/heterogenous, ionic liquids, or nanoparticles using conventional 
heating, microwave, or ultrasound energies [8,11,29-31]. FeCl3.6H2O [32], NaH2PO4 [33], ZnO [10], trityl chloride 

Abstract: A series of novel imidazo[1,2-a]pyrimidine containing tri/tetrasubstituted imidazole derivatives (1-10) has been synthesized 
via sequential two-step, one-pot, multicomponent reaction using imidazo[1,2-a]pyrimidine-2-carbaldehyde, benzil, primary amines, 
and ammonium acetate catalyzed by p-toluenesulfonic acid under microwave-assisted conditions. The results showed that target 
compounds can be obtained from a wide range of primary amines bearing different functional groups with moderate to good yields 
(46%-80%) under optimum reaction conditions. This method provides a green protocol for imidazo[1,2-a]pyrimidine containing tri/
tetrasubstituted imidazole derivatives due to ethyl alcohol as a green solvent, microwave irradiation as a greener heating method and 
one-pot multicomponent reaction as a green technique. The synthesized compounds have been elucidated using various spectroscopic 
tools such as FT-IR, 1H NMR, 13C NMR, and MS. 

Key words: Imidazo[1,2-a]pyrimidine, tri/tetrasubstituted imidazole, microwave synthesis, sequential, one-pot reaction, 
p-toluenesulfonic acid

Received: 14.09.2020              Accepted/Published Online: 26.11.2020              Final Version: 17.02.2021

Research Article

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://orcid.org/0000-0001-5261-1856
https://en.wikipedia.org/wiki/High_blood_pressure


GÜNGÖR / Turk J Chem

220

[13], MCM-41silica or p-TsOH [34], benzotriazole [35], HBF4–SiO2 or LiBF4 [11], TBABr [36], γ-Fe2O3@TiO2-EG-
Cu(II) [37] can be given as efficient catalysts in this area. Also, these targets can be synthesized from various starting 
materials at different reaction conditions such as one-pot condensation of nitriles, amines and benzoin, N-alkylation of 
trisubstituted imidazoles, cyclocondensation of N-alkyl-α-acetamidoketone/alcohol with ammonium acetate/ammonium 
trifluoroacetate, two-step reactions from alkenes through ketoiodonation/cyclisation, [3+2] or [2+2+1] annulation 
reactions from 2,3-disubstitutedazirines and imines, reaction of aldehydes with α-amido sulfones and so on [8,11,32,38].

Microwave energy is used extensively to heat or to carry out chemical reactions in a wide range of applications such 
as organic synthesis, polymer/material sciences, nanotechnological, and biochemical procedures since the first report 
on microwave assisted organic synthesis by Gedye and Giguere/Majetich in 1986 [39-42]. This environmentally friendly 
technique is applied to a wide variety of reaction types due to its superior properties such as short reaction time, high 
product yield, fewer by-products, high purity compared with conventional heating [39,40,43]. Also, there are some 
examples on microwave-promoted synthesis of imine functional group containing heterocyclic compounds and tri/
tetrasubstituted imidazole derivatives with one-pot multicomponent reaction in the literature [27,30,44-47]. In addition, 
one-pot multicomponent approach is a very useful tool to construct the complex compounds in recent years due to the 
advantages of short reaction time, high atom economy, minimum energy consumption, safety, cheapness, easy applicability, 
and environmentalist [48].

In this study, one-pot, sequential two step synthesis of imidazo[1,2-a]pyrimidine containing tri and tetrasubstituted 
novel imidazoles (1-10) from imidazo[1,2-a]pyrimidine-2-carbaldehyde, aliphatic/aromatic amines, benzil, and 
ammonium acetate in the presence of p-TsOH catalyst applying microwave energy was reported for the first time (Scheme 
1). Spectroscopic characterizations of products were carried out with FT-IR, 1H NMR, 13C NMR, and MS analyses. 
The synthesized compounds are expected to exhibit good biological properties due to having two nitrogen-containing 
heterocycles, imidazole, and imidazo[1,2-a]pyrimidine as potential pharmacophores.

2. Materials and methods
All commercial reagents and solvents were used directly without extra purification. Imidazo[1,2-a]pyrimidine-2-
carbaldehyde was prepared according to the literature procedure [49]. Experiments were conducted using by CEM 
SP Discover microwave synthesis reactor. Thin-layer chromatography was performed to track the reactions on Merck 
Kieselgel 60GF254 aluminum plates using 1:2 or 1:6 hexane:ethyl acetate as mobile phases. Visualization was done by UV at 
254 and 366 nm. Chromatographic separations of products were performed on a silica gel column by using Merck silica gel 
60, 230-400 mesh. Product yields were reported after purification steps, unless otherwise stated. All melting points were 

  
Figure 1. Structures of some biologically active imidazoles and imidazo[1,2-a]pyrimidines.
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determined by X-4 melting-point apparatus. The IR spectra of compounds were recorded on a Perkin Elmer Spectrum 100 
FTIR spectrophotometer (Waltham, MA USA) by ATR technique and were expressed in cm-1. NMR spectra were recorded 
in DMSO-d6 on Jeol (400 MHz for 1H NMR, 100 MHz for 13C NMR), and Agilent (600 MHz for 1H NMR, 150 MHz for 
13C NMR) high-performance digital FT-NMR. The chemical shifts (δ) were expressed in ppm and following splitting 
patterns were used: s, singlet; d, doublet; t, triplet; q, quartlet; m, multiplet and dd, double doublet. LC-MS analyses 
were performed with Shimadzu LC-MS/MS 8040 liquid chromatograph mass spectrometer equipped with an electrospray 
ionization source. Molecular weights of products were determined in positive ion mode monitoring [M+H]+ species. 
Compounds were named following IUPAC rules via ChemDraw 16.0 program (PerkinElmer, Inc., Waltham, MA USA).

General procedure for the preparation of tri/tetrasubstituted imidazo[1,2-a]pyrimidine (1-10)
A mixture of imidazo[1,2-a]pyrimidine-2-carbaldehyde [49] (75 mg, 0.51 mmol), amine derivative (0.56 mmol, 1.1 

equiv.), and p-toluenesulfonic acid (cat., 20% mol, 19.4 mg) was suspended in ethyl alcohol (2 mL) in a 35 mL microwave 
reaction vessel and stirred at room temperature for 5 min. The mixture was heated at 80 °C for 30 min by applying 100 
W microwave energy. The mixture was cooled down to room temperature, benzil (0.107 g, 0.51 mmol, 1.0 equiv.), and 
ammonium acetate (0.196 g, 2.55 mmol, 5.0 equiv.) were added to the reaction medium and stirred at room temperature 
for 5 min. Microwave irradiation (200 W) was applied to the mixture at 100 °C for 60-80 min until the reaction completion 
(TLC monitoring with hexane/ethyl acetate 1:2 and 1:6). The mixture was cooled to room temperature, and solvent/
volatiles were evaporated under vacuum. DCM (20 mL) was added to the residue, and organic phase was washed with 
distilled water (20 mL). Organic layer was dried over Na2SO4, filtered, and evaporated. The crude product was purified by 
column chromatography using hexane:ethyl acetate 1:4 or 1:6 as eluent. In case of minor impurities, the residue was treated 
with Et2O to obtain pure products after chromatographic purification. The following compounds (1-10) were prepared 
according to this general method.

2-(4,5-Diphenyl-1H-imidazol-2-yl)imidazo[1,2-a]pyrimidine (1)
The crude product which was obtained with one-step microwave reaction of aldehyde, benzil, ammonium acetate, and 

p-TsOH at 100 °C was purified by column chromatography using ethyl acetate. Yellow solid; yield: 100 mg (58%); m.p.: 
290-292 °C (dec.); Rf= 0.40 (ethyl acetate); 1H NMR (600 MHz, DMSO-d6): δ =  13.20 (s, 1H, -NH), 9.01 (dd, 1H, J = 6.7, 
1.9 Hz), 8.56 (dd, 1H, J = 4.2, 1.9 Hz), 8.36 (s, 1H), 7.51-7.47 (m, 4H), 7.37 (t, 2H, J = 7.6 Hz), 7.32-7.29 (m, 3H), 7.22 (t, 
1H, J = 7.6 Hz), 7.11 (dd, 1H, J = 6.7, 4.2 Hz) ppm; 13C NMR (150 MHz, DMSO-d6): δ = 151.1, 148.2, 142.1, 138.3, 138.1, 
135.7, 131.2, 129.3, 128.9, 128.8, 128.6, 128.5, 128.0, 127.8, 127.1, 109.7, 109.1 ppm; IR (ATR): ϑ= 3141, 3062, 3026, 1618, 
1603, 1524, 1505, 1489, 1445, 1419, 1342, 1311, 1244, 1229, 1109, 1072, 969, 917, 763, 693 cm-1; MS: m/z (%) = 338 (M+, 
100), 327 (44), 301 (64).

2-(1,4,5-Triphenyl-1H-imidazol-2-yl)imidazo[1,2-a]pyrimidine (2)
Yellow-green solid; yield: 105 mg (50%); m.p.: 234-235 °C; Rf= 0.40 (hexane:ethyl acetate, 1:6); 1H NMR (400 MHz, 

DMSO-d6): δ = 10.20 (dd, 1H, J = 7.0, 2.1 Hz), 8.66 (dd, 1H, J = 4.1, 2.1 Hz), 7.56 (d, 2H, J = 7.3 Hz), 7.46 (s, 5H), 7.34 (dd, 
1H, J = 7.0, 4.1 Hz), 7.30 (s, 5H), 7.26 (d, 2H, J = 7.7 Hz), 7.20 (d, 1H, J = 7.3 Hz), 6.55 (s, 1H) ppm; 13C NMR (100 MHz, 
DMSO-d6): δ = 151.6, 148.7, 138.4, 137.3, 136.5, 136.3, 134.5, 134.1, 131.6, 131.2, 130.33, 130.26, 130.2, 129.6, 129.2, 129.1, 
128.9, 127.3, 126.9, 114.4, 110.6 ppm; IR (ATR): ϑ= 3093, 3058, 3033, 3009, 1615, 1594, 1580, 1516, 1492, 1417, 1401, 1367, 
1282, 1251, 1160, 1093, 1071, 942, 860, 794, 768, 692, 657 cm−1; MS: m/z (%) = 414 (M+, 100), 391 (44), 381 (6).

2-(4,5-Diphenyl-1-p-tolyl-1H-imidazol-2-yl)imidazo[1,2-a]pyrimidine (3)
Yellow-green solid; yield: 131 mg (60%); m.p.:  233 °C; Rf= 0.45 (hexane:ethyl acetate, 1:6); 1H NMR (600  MHz, 

DMSO-d6): δ = 10.23 (dd, 1H, J = 7.0, 1.5 Hz), 8.67-8.66 (m, 1H), 7.56 (d, 2H, J = 7.6 Hz), 7.35-7.26 (m, 12H), 7.20 (t, 1H, 
J = 7.0 Hz), 6.57 (s, 1H), 2.34 (s, 3H) ppm; 13C NMR (150 MHz, DMSO-d6): δ = 151.5, 148.6, 139.9, 138.4, 137.1, 136.2, 
134.4, 134.0, 133.8, 131.5, 131.1, 130.7, 130.2, 129.1, 129.0, 128.8, 127.2, 126.7, 114.3, 110.5, 21.2 ppm; IR (ATR): ϑ= 3093, 
3056, 3047, 3034, 3007, 2960, 2927, 1617, 1601, 1579, 1516, 1496, 1429, 1421, 1370, 1287, 1243, 1161, 1129, 1111, 1019, 
941, 914, 830, 798, 783, 765, 693, 656 cm−1; MS: m/z (%) = 428 (M+, 100), 413 (12), 405 (8), 392 (28), 381 (6).

Scheme 1. Synthesis of imidazo[1,2-a]pyrimidine containing tri/tetrasubstituted imidazoles.
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4-(2-(Imidazo[1,2-a]pyrimidin-2-yl)-4,5-diphenyl-1H-imidazol-1-yl)phenol (4)
Cream-colored solid; yield: 123 mg (56%); m.p.: >300 °C; Rf= 0.28 (hexane:ethyl acetate, 1:6); 1H NMR (600 MHz, 

DMSO-d6): δ = 10.26 (dd, 1H, J = 7.1, 1.9 Hz), 9.99 (s, 1H, -OH), 8.67 (dd, 1H, J = 4.0, 1.9 Hz), 7.56 (d, 2H, J = 8.1 
Hz), 7.35-7.32 (m, 4H), 7.30-7.23 (m, 6H), 7.19 (t, 1H, J = 7.1 Hz), 6.80 (d, 2H, J = 8.1 Hz), 6.63 (s, 1H) ppm; 13C NMR 
(150 MHz, DMSO-d6): δ = 158.7, 151.4, 148.6, 138.7, 136.9, 136.2, 134.5, 134.0, 131.5, 131.3, 130.5, 130.3, 129.1, 129.0, 
128.7, 127.3, 127.1, 126.7, 116.5, 114.4, 110.5 ppm; IR (ATR): ϑ= 3092, 3066, 3013, 1622, 1603, 1516, 1503, 1479, 1446, 
1407, 1373, 1279, 1240, 1165, 1133, 1099, 1044, 945, 840, 788, 770, 733, 702, 692, 662 cm−1; MS: m/z (%) = 430 (M+, 100), 
413 (20), 391 (36), 327 (20), 301 (16).

2-(1-(4-Methoxyphenyl)-4,5-diphenyl-1H-imidazol-2-yl)imidazo[1,2-a]pyrimidine (5)
Yellow solid; yield: 140 mg (62%); m.p.: 236-238 °C; Rf = 0.38 (hexane:ethyl acetate, 1:6); 1H NMR (600 MHz, DMSO-d6): 

δ = 10.25 (dd, 1H, J = 7.1, 1.6 Hz), 8.67 (dd, 1H, J = 3.9, 1.6 Hz), 7.56 (d, 2H, J = 7.7 Hz), 7.40 (d, 2H, J = 8.6 Hz), 7.36-7.32 
(m, 6H), 7.28 (t, 2H, J = 7.7 Hz), 7.20 (t, 1H, J = 7.1 Hz), 6.99 (d, 2H, J = 8.6 Hz), 6.60 (s, 1H), 3.77 (s, 3H) ppm; 13C NMR 
(150 MHz, DMSO-d6): δ = 160.2, 151.5, 148.6, 138.7, 137.0, 136.2, 134.4, 134.0, 131.5, 131.3, 130.6, 130.3, 129.1, 129.0, 
128.8, 128.7, 127.1, 126.7, 115.2, 114.4, 110.5, 55.9 ppm; IR (ATR): ϑ= 3106, 3065, 3018, 2947, 2923, 2851, 1615, 1603, 1580, 
1513, 1496, 1444, 1404, 1367, 1283, 1252, 1165, 1107, 1015, 941, 836, 786, 768, 714, 694, 657 cm−1; MS: m/z (%) = 444 (M+, 
100), 413 (4), 391 (16), 329 (10), 310 (12).

2-(1-(4-Chlorophenyl)-4,5-diphenyl-1H-imidazol-2-yl)imidazo[1,2-a]pyrimidine (6)
Yellow solid; yield: 105 mg (46%); m.p.: 255-256 °C; Rf= 0.53 (hexane:ethyl acetate, 1:6); 1H NMR (600 MHz, DMSO-d6): 

δ = 10.15 (dd, 1H, J = 7.1, 1.9 Hz), 8.68 (dd, 1H, J = 4.0, 1.9 Hz), 7.57 (d, 2H, J = 7.7 Hz), 7.53 (s, 4H), 7.36-7.34 (m, 4H), 
7.32-7.30 (m, 2H), 7.28 (d, 2H, J = 7.7 Hz), 7.21 (t, 1H, J = 7.1 Hz), 6.70 (s, 1H) ppm; 13C NMR (150 MHz, DMSO-d6): δ 
= 151.7, 148.7, 138.2, 137.2, 136.1, 135.3, 134.8, 134.2, 134.1, 131.6, 131.4, 131.1, 130.2, 129.9, 129.3, 129.2, 128.8, 127.3, 
126.7, 114.2, 110.6 ppm; IR (ATR): ϑ= 3095, 3069, 3058, 3049, 3008, 1616, 1601, 1520, 1493, 1476, 1403, 1370, 1287, 1249, 
1161, 1129, 1088, 1015, 941, 842, 803, 782, 766, 694, 654 cm−1; MS: m/z (%) = 448 (M+, 100), 428 (6), 413 (8), 391 (36).

2-(1-Benzyl-4,5-diphenyl-1H-imidazol-2-yl)imidazo[1,2-a]pyrimidine (7)
Cream-colored solid; yield: 148 mg (68%); m.p.: 245-246 °C; Rf= 0.30 (hexane:ethyl acetate, 1:6); 1H NMR (600 MHz, 

DMSO-d6): δ = 9.01 (dd, 1H, J = 6.7, 1.9 Hz), 8.54 (dd, 1H, J = 4.0, 1.9 Hz), 8.49 (s, 1H), 7.44-7.39 (m, 5H), 7.22-7.19 (m, 
4H), 7.15-7.10 (m, 5H), 6.79 (d, 2H, J =7.3 Hz), 5.88 (s, 2H, benzyl -CH2) ppm; 13C NMR (100 MHz, DMSO-d6): δ = 151.3, 
147.8, 140.9, 138.5, 138.4, 137.8, 135.6, 134.7, 131.3, 131.0, 130.6, 129.4, 129.3, 128.8, 128.7, 128.6, 127.7, 127.4, 126.9, 
126.6, 111.4, 110.0, 48.0 ppm; IR (ATR): ϑ= 3121, 3096, 3063, 3028, 2938, 1618, 1602, 1583, 1506, 1496, 1434, 1400, 1330, 
1309, 1232, 1215, 1150, 1074, 1027, 940, 921, 787, 779, 757, 723, 691 cm−1; MS: m/z (%) = 428 (M+, 100), 413 (36), 391 (44), 
327 (28), 310 (20).

2-(1-Ethyl-4,5-diphenyl-1H-imidazol-2-yl)imidazo[1,2-a]pyrimidine (8)
Cream-colored solid; yield: 149 mg (80%); m.p.: 180-183 °C; Rf= 0.38 (hexane:ethyl acetate, 1:8); 1H NMR (400 MHz, 

DMSO-d6): δ = 9.03 (dd, 1H, J = 6.7, 1.9 Hz), 8.57 (dd, 1H, J = 4.0, 1.9 Hz), 8.46 (s, 1H), 7.57-7.52 (m, 3H), 7.47-7.46 (m, 
2H), 7.40 (d, 2H, J = 7.7 Hz), 7.19 (t, 2H, J = 7.7 Hz), 7.14-7.10 (m, 2H), 4.46 (q, 2H, J = 7.0 Hz), 1.14 (t, 3H, J = 7.0 Hz) 
ppm; 13C NMR (150 MHz, DMSO-d6): δ = 151.1, 148.0, 140.1, 138.7, 137.4, 135.5, 134.9, 131.5, 131.1, 130.6, 129.7, 129.5, 
128.5, 126.6, 126.4, 111.1, 109.9, 39.9, 16.8 ppm; IR (ATR): ϑ= 3102, 3083, 3060, 3023, 2979, 2955, 2935, 1619, 1601, 1576, 
1525, 1504, 1443, 1376, 1305, 1247, 1233, 1174, 1130, 1071, 934, 919, 790, 765, 690 cm−1; MS: m/z (%) = 366 (M+, 100), 338 
(10), 327 (14), 310 (14).

2-(1-Isopropyl-4,5-diphenyl-1H-imidazol-2-yl)imidazo[1,2-a] pyrimidine (9)
White solid; yield: 139 mg (72%); m.p.: 278-279 °C; Rf= 0.35 (hexane:ethyl acetate, 1:8); 1H NMR (600 MHz, DMSO-d6): 

δ =  9.03 (d, 1H, J = 6.5 Hz), 8.58 (s, broad, 1H), 8.41 (s, 1H), 7.54 (s, broad, 3H), 7.49 (s, broad, 2H), 7.32 (d, 2H, J = 7.5 
Hz), 7.17-7.13 (m, 3H), 7.09 (t, 1H, J = 6.5 Hz), 5.31 (s, broad, 1H), 1.38 (d, 6H, J = 6.7 Hz) ppm; 13C NMR (150 MHz, 
DMSO-d6): δ = 151.2, 147,6, 140.5, 139.0, 137.6, 135.5, 135.0, 132.4, 132.3, 130.6, 129.6, 129.4, 128.4, 126.5, 126.4, 112.2, 
109.9, 49.4, 22.8 ppm; IR (ATR): ϑ= 3116, 3092, 3056, 2973, 2934, 2875, 1651, 1622, 1603, 1575, 1523, 1504, 1442, 1360, 
1304, 1274, 1239, 1179, 1148, 1072, 939, 917, 778, 763, 697, 653 cm−1; MS: m/z (%) = 380 (M+, 100), 338 (12), 327 (16), 
310 (12).

2-(1-Cyclohexyl-4,5-diphenyl-1H-imidazol-2-yl)imidazo[1,2-a]pyrimidine (10)
White solid; yield: 145 mg (68%); m.p.: 267-268 °C; Rf= 0.25 (hexane:ethyl acetate, 1:6); 1H NMR (600 MHz, DMSO-d6): 

δ = 9.03 (dd, 1H, J = 7.0, 2.0 Hz), 8.58 (dd, 1H, J = 4.1, 2.0 Hz), 8.40 (s, 1H), 7.55-7.54 (m, 3H), 7.47-7.46 (m, 2H), 7.32 (d, 
2H, J = 7.4 Hz), 7.17-7.13 (m, 3H), 7.09 (t, 1H, J = 7.0 Hz), 1.91-1.83 (m, 5H), 1.65 (d, 2H, J = 13.1 Hz), 1.48 (d, 1H, J = 
13.1 Hz), 1.12 (q, 2H, J= 13.1 Hz), 0.85 (m, 1H) ppm; 13C NMR (150 MHz, DMSO-d6): δ = 151.2, 147.6, 140.7, 139.0, 135.5, 
135.0, 132.2, 130.7, 129.7, 129.3, 128.4, 126.5, 126.4, 112.2, 109.9, 57.7, 32.5, 26.3, 25.1 ppm; IR (ATR): ϑ= 3102, 3080, 3063, 
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3026, 2945, 2923, 2856, 1619, 1603, 1575, 1525, 1505, 1442, 1391, 1288, 1277, 1235, 1070, 1007, 936, 916, 892, 785, 767, 696, 
671 cm−1; MS: m/z (%) = 420 (M+, 100), 391 (28), 338 (8), 310 (12).

3. Results and Discussion
In the present work, a new series of 2-(1-substituted-4,5-diphenyl-1H-imidazol-2-yl)imidazo[1,2-a]pyrimidine (1–10) is 
reported (Scheme 1). Firstly, the synthesis of 2-(4,5-diphenyl-1-p-tolyl-1H-imidazol-2-yl)imidazo[1,2-a]pyrimidine (3) 
from imidazo[1,2-a]pyrimidine-2-carbaldehyde, p-toluidine, benzil, and ammonium acetate was determined as a model 
reaction, and some optimization studies under microwave irradiation were carried out on it (Table 1). 

Firstly, one-pot, one-step, multicomponent reaction conditions were applied. It was observed that the conversion rate 
was approximately 50% at 90 min reaction time and the isolated product yield was 20% with no catalyst in ethyl alcohol 
in 100 °C temperature (Table 1, entry 1). During optimization studies, AcOH, FeCl3.6H2O, NaH2PO4, trityl chloride and 
p-TsOH were used to explore the impact of different catalysts (Table 1, entry 2-6). Multicomponent reaction in acetic acid 
at 140 °C resulted in 25% product yield (Table 1, entry 2). In the presence of acetic acid, N-(p-tolyl)acetamide was isolated 
as a by-product which obtained by amidation reaction between acetic acid and p-toluidine. It was determined that almost 
all catalysts work in our model reaction, but the best catalyst is p-TsOH in terms of product yield. 

Consequently, the preliminary one-pot, one-step results showed us reactions were carried out in a competitive way 
and a certain amount of 2,4,5-trisubstituted imidazole (1) was also obtained in addition to main tetrasubstituted product 
although different catalysts were used [11]. Therefore, next efforts were directed to the one-pot, sequential two step 
reactions to prevent trisubstituted imidazole by-product. For this purpose, the imine formation reaction was carried out 
between aldehyde, primary amine, and catalyst in the first step and then benzil and ammonium acetate were added to the 
reaction medium to conduct condensation and cyclization in the second step. 

While the usage of 5.0 equiv. ammonium acetate cause to increasement of product yield in two-step reactions, it was 
used 1.0 equiv. in one-step multicomponent reaction to minimize the formation of trisubstituted imidazole. While the 
reaction was carried out neat conditions or higher temperatures such as 120 °C in different solvent choice, the starting 
materials (aldehyde or imine) consumed in shorter reaction times, but the ratio of decomposition by-product increased 
and the yields of target product decreased. Also, the use of more p-TsOH as catalyst did not lead to any increase in 
imidazole formation.

When the reaction was run in the sequential two-step with the catalyst of p-TsOH under microwave irradiation at 80 
°C for 30 min and 100 °C for 80 min, the best result was obtained for compound 3 (Table 1, entry 7). Synthetic details were 
reported in the experimental section.

Followed by the primary results, this method was applied to the various imidazo[1,2-a]pyrimidine containing tri/
tetrasubstituted imidazole derivatives using different aliphatic (ethyl, isopropyl, cyclohexyl and benzyl amines) and electron 
donating or withdrawing functional groups bearing aromatic primary amines (aniline, p-toluidine, p-aminophenol, 
p-anisidine, p-chloroaniline) at optimized reaction conditions (Table 2). Also, 2,4,5-trisubstituted imidazole derivative (1) 
was synthesized successfully (58%) according to the specified reaction conditions. While aromatic derivatives were obtained 
in 46%-62% yields, aliphatic derivatives were synthesized in higher yields (68%-80%). In addition, electron withdrawing 
group (-Cl) bearing compound (6) was obtained with lower yield compared to the other aromatic derivatives. Interestingly, 
the reaction of aldehyde and 3-amino-5-methylisoxazole as a heterocyclic primary amine to obtain their Schiff base was 
found unsuccessful in these conditions, so heterocyclic unit containing target compound was not synthesized. 

The optimized condition (Table 1, entry 7) for compound 3 was adapted to the conventional method as reflux in ethyl 
alcohol. While the first step resulted in successful imine formation in 5 h, the final imidazole product was obtained at long 
reaction times (36 h) with low yields (30%) in the second step compared to microwave outputs. Also, another conventional 
reaction was carried out in the absence of p-TsOH catalyst and the conversion of imine to imidazole was not observed at 
24 h reflux in EtOH. As a result, the multidimensional positive effects (high yield, short reaction times, and low by-product 
formation) of the catalyst and microwave energy on the reaction were clearly observed.

All the imidazole derivatives were confirmed by using MS, FT-IR, 1H, and 13C NMR spectral characterization and 
melting points (see experimental and supporting information part). According to the FT-IR spectra, the absence of C=O 
stretching of benzil and aldehyde derivative, -NH2 stretching of amines and the presence of aromatic C-H stretching in 
3000-3100 cm-1, C=C and C=N absorptions in 1625-1575 cm-1 and strong out-of-plane C-H bending vibrations of mono/
disubstituted benzenes in 900-650 cm-1 confirm the structure of final products. Taking compound 5 as an example, the 
structure was confirmed spectroscopically with 1H and 13C NMR and also 2D NMR analysis (HSQC and HMBC) (see 
supporting information). Chemical shifts and J couplings of the 1H NMR spectrum showed the presence of two doublet 
of doublets at 10.25, 8.67 and singlet peak at 6.60 ppm corresponding to protons H-4, H-6 of ring C and proton H-3 of 
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ring B, respectively and singlet peak at 3.77 ppm corresponding to the methoxy group. Other hydrogen signals in the 
range of 7.57-6.98 ppm belong to the three phenyl rings and H-5. It is observed that doublet peaks at 7.40 and 6.99 ppm 
with JH-H= 8.6 Hz corresponded to H-2´´´´ and H-3´´´´ at ring D with AA’BB’ system like as other para-substituted 
benzene derivatives (3, 4 and 6). There are 1 aliphatic (-OCH3) and 21 aromatic peaks six of which have 2C integration 
(symmetrical carbons) in 13C NMR spectra. According to HSQC interactions, it was concluded that signals at 151.48, 
136.12, 133.98, 130.61, 127.14, 126.69, 115.18, and 55.76 ppm corresponded to carbons C-6, C-4, C-3, C-2´´´´/C-6´´´´, 
C-4´´´, C-2´´´/C-6´´´, C-3´´´´/C-5´´´´ and -OCH3, respectively. Chemical shifts of carbons C-4´´´´ (160.13 ppm, highest 
value) and C-1´´´´ (128.82 ppm) at ring D were detected as a result of the HMBC correlations with protons H-2´´´´, 
H-3´´´´, -OCH3 and protons H-2´´´´, H-3´´´´, respectively. While the signal of 110.51 ppm corresponds to the C-5 at ring 
C due to the HMBC correlations with H-4 and H-6 protons, 148.57 ppm can be the joint carbon (C-7a) of ring B and C due 
to the strong HMBC interactions with H-3 and H-4. Also, 110.51 ppm (C-5) gives HSQC correlation with 7.36 ppm/H-5 

Table 1. Various reaction conditions for the model compound 3.
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(i) One-step competitive reaction

(ii) Sequential two-step reaction

Entry Solvent Amount of 
NH4OAc Catalyst/Amount Temperature (°C) /

Power (Watt) Time (min) Yielda (%)

1 EtOH 1.0 equiv. - 100/100 90 20b 
2 AcOH 1.0 equiv. AcOH 140/200 30 25b

3 EtOH 1.0 equiv. FeCl3.6H2O/5% mol 120/200 45 28b

4 - 1.0 equiv. NaH2PO4/30% mol 120/100 30 30b

5 EtOH 1.0 equiv. Trityl chloride/ 10% mol 120/200 45 30b

6 EtOH 1.0 equiv. p-TsOH/20% mol 120/200 40 36b

7 EtOH 5.0 equiv. p-TsOH/20% mol 80/100 
100/200

30
80 60c

8 1-butanol 3.0 equiv. p-TsOH/20% mol 80/100 
120/200

30 
30 44c

9 Toluene 5.0 equiv. AcOH/5 equiv. 80/100
120/200

30 
30 42c

10 - 5.0 equiv. p-TsOH/20% mol 80/100 
100/200

30
30 40c

a Isolated yield.
b One-step reaction.
c Sequential two-step reaction.
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Table 2. Synthesis of tri/tetrasubstituted imidazoles (1-10).

 

Entry Amine Producta Yieldb (%)
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which is overlapped with the multiplet peaks at 7.36-7.32 ppm with 6H integration. In addition, triplet (1H), triplet (2H), 
and doublet (2H) peaks at 7.20, 7.28 and 7.56 ppm belong to the protons H-4´´´, H-3´´´/H-5´´´ and H-2´´´/H-6´´´at ring 
F, respectively according to the JH-H couplings and HMBC results. Some important HMBC correlations, 1H NMR and 13C 
NMR spectra of compound 5 were given in Figure 2. Calculated and measured m/z values of the final compounds (1-10) 
were also found compatible in LC-MS analysis.

A proposed mechanism for imidazo[1,2-a]pyrimidine containing tri/tetrasubstituted imidazoles, which was supported 
by the literature, was given in Scheme 2 [8,10,13,50]. In the first step, imidazo[1,2-a]pyrimidine-2-carbaldehyde reacts 
with amine derivative in the presence of catalyst to form imine intermediate (A). Ammonium acetate which was added 
to the reaction medium in the second step converts to ammonia and acetic acid. Ammonia attacks as a nucleophile to the 
C=N double bond of the intermediate (A) to produce intermediate (B). The next step consists of the simultaneous double 
condensation between intermediate (B) and benzil and formation of 5-membered ring (intermediate C). After cyclization, 
intramolecular proton exchange occurs between nitrogen and oxygen species and forms intermediate (D). Finally, target 
structures (1-10) are obtained as a result of dehydration step (2 mol H2O) with electronic rearrangements. The function 
of catalyst, p-toluenesulfonic acid (TsOH), is to make easy the nucleophilic attack of nitrogen sources (RNH2 and NH3) 
through the increasement of electrophilic power on carbonyl carbons of aldehyde and benzil starting materials. 

In conclusion, microwave-promoted synthesis of novel imidazo[1,2-a]pyrimidine containing tri/tetrasubstituted 
imidazole derivatives (1-10) via sequential two-step, one-pot, multicomponent reaction of imidazo[1,2-a]pyrimidine-
2-carbaldehyde, benzil, primary amines and ammonium acetate using p-toluenesulfonic acid as catalyst was described. 
It was observed that this efficient method was applicable to various primary amines such as aliphatic and aromatic 
amines bearing electron withdrawing or donating functional groups. Target compounds were obtained with moderate 
to good yields (46%-80%) under microwave conditions as a green technique. The products were confirmed using several 
spectroscopic techniques including FT-IR, 1H NMR, 13C NMR, and MS. Also the structure of compound 5 has been 
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8 NH2
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NH2 N
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N 68

a Reaction conditions: Imidazo[1,2-a]pyrimidine-2-carbaldehyde (1.0 equiv.), amine (1.1 equiv.), benzil (1.0 equiv.), ammonium 
acetate (5.0 equiv.), catalyst (20%). 
b Yields refer to the isolated pure products.

Table 2. (Continued).
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confirmed using HSQC and HMBC as 2D NMR analyses. The biological studies of products (1-10), which are expected to 
show good pharmacological properties, are ongoing in our research group.
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Figure 2. a. Important HMBC correlations. b. 1H NMR spectra. c. 13C NMR spectra of compound 5.

 
Scheme 2. A proposed mechanism for target imidazoles.
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Supporting Information 

 

 

Figure S1. FT-IR spectra of compound 1.  
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Figure S2. 1H NMR spectra of compound 1. 

 
Figure S3. 13C NMR spectra of compound 1.  
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Figure S4. MS spectra of compound 1.   

  

 

Figure S5. FT-IR spectra of compound 2.  
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Figure S6. 1H NMR spectra of compound 2. 

 

Figure S7. 13C NMR spectra of compound 2. 
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Figure S8. MS spectra of compound 2.     

 

Figure S9. FT-IR spectra of compound 3.  
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Figure S10. 1H NMR spectra of compound 3.  

 
Figure S11. 13C NMR spectra of compound 3. 
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Figure S12. MS spectra of compound 3.   

 

Figure S13. FT-IR spectra of compound 4. 
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Figure S14. 1H NMR spectra of compound 4. 

 
Figure S15. 13C NMR spectra of compound 4. 



9 

 

 

Figure S16. MS spectra of compound 4.     

 

Figure S17. FT-IR spectra of compound 5. 
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Figure S18. 1H NMR spectra of compound 5. 

 
Figure S19. 13C NMR spectra of compound 5. 
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Figure S20. HSQC spectra of compound 5. 

 
Figure S21. HMBC spectra of compound 5. 
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Figure S22. MS spectra of compound 5.    

 

Figure S23. FT-IR spectra of compound 6.  
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Figure S24. 1H NMR spectra of compound 6. 

 

Figure S25. 13C NMR spectra of compound 6.  
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Figure S26. MS spectra of compound 6.     

 

Figure S27. FT-IR spectra of compound 7.  
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Figure S28. 1H NMR spectra of compound 7. 

 
Figure S29. 13C NMR spectra of compound 7. 
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Figure S30. MS spectra of compound 7.  

 

   

Figure S31. FT-IR spectra of compound 8.  
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Figure S32. 1H NMR spectra of compound 8. 

 
Figure S33. 13C NMR spectra of compound 8. 
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Figure S34. MS spectra of compound 8.    

 

Figure S35. FT-IR spectra of compound 9.  
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Figure S36. 1H NMR spectra of compound 9.  

 
Figure S37. 13C NMR spectra of compound 9. 
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Figure S38. MS spectra of compound 9.     

 

Figure S39. FT-IR spectra of compound 10.  
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Figure S40. 1H NMR spectra of compound 10.  

 
Figure S41. 13C NMR spectra of compound 10. 



22 

 

 

 
Figure S42. MS spectra of compound 10.  
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