IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received May 7, 2021, accepted June 12, 2021, date of publication June 16, 2021, date of current version June 28, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3089849

Numerical Data Classification via Distance-Based
Similarity Measures of Fuzzy Parameterized
Fuzzy Soft Matrices

SAMET MEMIS", SERDAR ENGINOGLU"'!, AND UGUR ERKAN "2

! Department of Mathematics, Faculty of Arts and Sciences, Canakkale Onsekiz Mart University, 17100 Canakkale, Turkey
2Department of Computer Engineering, Faculty of Engineering, Karamanoglu Mehmetbey University, 70100 Karaman, Turkey

Corresponding author: Samet Memis (samettmemis @ gmail.com)

This work was supported by the 2211-C Domestic Doctoral Fellowship for Priority Areas by the Scientific and Technological Research
Council of Turkey (TUBITAK) under Grant 1649B031905299.

ABSTRACT In this paper, we first define eight pseudo-metrics and eight pseudo-similarities based on these
pseudo-metrics over fpfs-matrices. We then propose a new classification algorithm, i.e. Fuzzy Parameterized
Fuzzy Soft Euclidean Classifier (FPFS-EC), based on Euclidean pseudo-similarity. After that, we compare
FPFS-EC with Support Vector Machines (SVM), Fuzzy k-Nearest Neighbor (Fuzzy kNN), Fuzzy Soft
Set Classifier (FSSC), FussCyier, Fuzzy Soft Set Classification Using Hamming Distance (HDFSSC), and
Fuzzy kNN Based on the Bonferroni Mean (BM-Fuzzy kNN) in terms of the performance criteria - namely
accuracy, precision, recall, macro F-score, and micro F-score - and running time by using 18 real-world
datasets in the UCI machine learning repository. The results show that FPFS-EC performs better in the
occurrence of the 13 of 18 datasets in question than SVM, Fuzzy kNN, FSSC, FussCyier, HDFSSC, and
BM-Fuzzy kNN.

INDEX TERMS Fuzzy sets, soft sets, fpfs-matrices, similarity measure, classification, supervised learning.

I. INTRODUCTION

It is encountered with various types of uncertainty in many
fields, such as medicine, the defense industry, psychology,
finance, astronomy, meteorology, and space sciences. The
concept of soft sets [1] is a standard and practical math-
ematical tool used for modeling such uncertainties. More-
over, research on some generalizations of this concept, such
as fuzzy soft sets (fs-sets) [2], [3], fuzzy parameterized
soft sets [4], fuzzy parameterized fuzzy soft sets [5], soft
matrices [6], fuzzy soft matrices [7], fuzzy parameterized
fuzzy soft matrices (fpfs-matrices) [8], have been introduced.
Due to these generalizations, problems’ modeling contain-
ing fuzzy parameters and/or fuzzy alternatives (objects)
have been possible. Since fpfs-matrices successfully model
problems where both parameters and alternatives are uncer-
tain, they are prominent in their substructures. Further-
more, recent research has studied the configuration of soft
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decision-making methods to fpfs-matrices space [9]-[14],
the simplification of the configured methods [15]-[18],
and their applications to performance-based value assign-
ment (PVA) problem in image denoising [19]-[22]. These
studies have corroborated that fpfs-matrices successfully
model the decision-making problems where both parameters
and alternatives are uncertain.

So far, many studies have been conducted on the concept
of soft sets in such fields as soft algebra [23]-[26], soft
topology [27]-[31], decision-making [32]-[36], similarity
measure [37]-[40], distance measure [38], [41], medical
diagnosis [42], texture classification [43], and data clas-
sification [44]-[46]. Although the studies mentioned above
have been carried out in a great variety of fields, these
studies feature modeled problems often similar to each other
and fictitious, except Fuzzy Soft Set Classifier (FSSC) [44],
FussCyier [45], Fuzzy Soft Set Classification using Ham-
ming Distance (HDFSSC) [46]. In particular, most studies
on decision-making problems and similarity measures have
been applied only to fashioned problems. Since similarity and
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TABLE 1. Properties of the proposed and compared classifiers based on fuzzy sets and fs-sets.

Ref. Year Classifier Crisp Fuzzy set fs-set fpfs-matrix Inverse Distance Distance-Based Similarity Parameters’ Impact
[47] 1985 Fuzzy KNN v v

[49] 1995 SVM v

[44] 2012 FSSC ' v

[45] 2017 FussCyier v v

[46] 2018 HDFSSC v v

[48] 2020 BM-Fuzzy kNN v v

Proposed 2021 FPFS-EC v v

distance measures play an essential role in machine learning
and soft sets can effectively model problems containing
uncertainties, applying similarity and distance measures of
soft sets to real problems should be attended to. For example,
recently, [45] have developed a classification algorithm, i.e.
FussCyier, using a similarity measure of fs-sets for medical
data classification. However, fs-sets cannot model problems
containing fuzzy parameters. That is, fs-sets cannot consider
the question "Which parameters are capable of effectively
classifying data?", but fpfs-sets can. Therefore, it yields more
successful results. Taking all of these into account, fpfs-
sets are more suitable for a highly successful modeling and
outperform the aforementioned. On the other hand, the matrix
representations of fpfs-sets, i.e. fpfs-matrices, are needed to
process a large number of data. To this end, we put forward
distance measures and distance-based similarity measures
of fpfs-matrices and apply the similarity measures to real
numerical data classification. It can be summed up the major
theoretical and applied contributions of the present paper as
follows:

o The concepts of quasi-metric, semi-metric, pseudo-
metric, and metric over fpfs-matrices spaces are defined.
Afterward, eight pseudo-metrics over fpfs-matrices are
proposed.

o The concepts of quasi-similarity, semi-similarity,
pseudo-similarity, and similarity over fpfs-matrices
spaces are defined. Afterward, eight pseudo-similarities
over fpfs-matrices are proposed.

o This study is one of the pioneer studies combining soft
sets and machine learning.

« In opposition to many studies working on a fictitious
problem, this paper has applied the distance-based sim-
ilarity measures of fpfs-matrices to classification prob-
lems in machine learning.

o A new classifier, referred to as Fuzzy Parameterized
Fuzzy Soft Euclidean Classifier (FPFS-EC), employing
Euclidean pseudo-similarity of fpfs-matrices and con-
sidering parameters’ impact on classification, has been
developed.

To demonstrate FPFS-EC’s classification performance,
besides the state-of-the-art fuzzy soft-based classifiers such
as FSSC [44], FussCiyer [45], and HDFSSC [46], we com-
pare it with a well-known fuzzy-based classifier and its
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state-of-the-art version, i.e., Fuzzy k-Nearest Neighbor
(Fuzzy kNN) [47] and Fuzzy kNN based on the Bon-
ferroni Mean (BM-Fuzzy kNN) [48], respectively. More-
over, we compare the proposed method with Support Vector
Machines (SVM) [49]. We detail the classifiers in Table 1.
In comparison, we utilize 18 real-world datasets from the
University of California-Irvine (UCI) Machine Learning
Repository [50]. Additionally, we provide a statistical eval-
uation of the comparison results.

The rest of the paper is organized as follows: In Section 2,
we present definitions of fuzzy parameterized fuzzy soft sets
and fuzzy parameterized fuzzy soft matrices. In Section 3,
we define eight pseudo-metrics of fpfs-matrices and in
Section 4, eight pseudo-similarities of fpfs-matrices based
on these pseudo-metrics. In Section 5, we propose FPFS-EC
using the Euclidean pseudo-similarity of fpfs-matrices.
In Section 6, we first compare FPFS-EC with SVM [49],
FSSC [44], FussCyier [45], HDFSSC [46], Fuzzy kNN [47],
and BM-Fuzzy kNN [48] classifiers in terms of running
time and performance criteria, such as accuracy, precision,
recall, macro F-score, and micro F-score by processing 18
numerical datasets in the UCI database. We then present
the statistical analyses and their results. Finally, we provide
the conclusive remarks and make some suggestions for fur-
ther research. This study is a part of the first author’s PhD
dissertation.

Il. PRELIMINARIES

In this section, we present some of the basic definitions
needed for the following sections. Throughout this paper, let
E be a parameter set, F'(E) be the set of all fuzzy sets over E,
and i € F(E). Here, u := {*Wx : x € E}.

Definition I [5]: Let U be a universal set, u € F(E),
and o be a function from w to F(U). Then, the set
{(“(X)x, a(*x)):x e E} the graphic of «, is called a fuzzy
parameterized fuzzy soft set (fpfs-set) parameterized via E
over U (or briefly over U).

From now on, the set of all fpfs-sets over U is denoted by
FPFSg(U). In FPFSE(U), since the graph(«) and o generate
each other uniquely, the notations are interchangeable. There-
fore, as long as it causes no confusion, we denote a fpfs-set
graph(«) by «.
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Example 2: Let E = {x1,x2,x3} and U = {uy, up, us}.
Then,

o= [(1x17 (053, 02 ) 0 yony (020 (01, 01, 08,y
O, (a0 wo,! u3})}

and

B = {(O'IM, %0ur, 2, %7 uz}), O, (Bur, un, %3 us)),
O7x3, {11y, 00 4,03 u3})}

are two fpfs-sets over U.
Definition 3 [8]: Let o € FPFSg(U). Then, [a;] is called
the tpfs-matrix of o and is defined by

aopi an2 an3 cee aon

ain an als ce ain
lajj] :==

aml am2  dm3 ce. Omn

such that fori € {0,1,2,---}Yandje {1,2,---},

I 1) i=0
P e, i #0

Here, if |U| = m — 1 and |E| = n, then [a;;] has order
m X n.

Hereinafter, the set of all fpfs-matrices parameter-
ized via E over U is denoted by FPFSg[U] and let
lai], [by], [cij] € FPFSg(U], 1, = {1,2,3,...,m}, and
Iy :={0,1,2,...,m}.

Example 4: The fpfs-matrices of a and B provided in
Example 2 are as follows:

1 02 047
05 1 1

lal =102 01 05|
(04 08 1
[0.1 09 0.7
06 08 1

bl =11 1 o6
(07 03 03

Definition 5 [8]: Let [a;;] € FPFSg[U]). For all i and j,
if aj = A, then [a;] is called A-fpfs-matrix and is denoted
by [A]. Here, [0] and [1] are called empty fpfs-matrix and
universal fpfs-matrix, respectively.

Definition 6 [8]: Let [a;], [b;] € FPFSg[U]. For all i
and j,

If ajj = bjj, then [a;j] and [b;j] are called equal fpfs-
matrices and is denoted by [a;;] = [bjj].

If a;j < byj, then [a;j] is called a submatrix of [b;j] and is
denoted by [a,-j]é[bij].

Ifla;j]1<[bij) and [a;;] # [bjj), then [ajj] is called a proper
submatrix of [bj;] and is denoted by [a;;1C[b;;].
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Example 7: Let E and U be as in Example 4 and let [c;j] €
FPFSg[U] such that

1 1 08
09 1 1

legl =1 1 07
08 09 1

Then, [a;1C[cij), [bi1Clcij), and [aj]Z [bij].

lll. DISTANCE MEASURES OF FUZZY PARAMETERIZED
FUZZY SOFT MATRICES

In this section, we first define concepts of quasi-metric, semi-
metric, pseudo-metric, and metric over FPFSg[U]. Our goals
herein are both to contribute theoretically to the soft set
theory and to avail of fpfs-matrices in classification problems
in machine learning. The metrics and similarities of fpfs-
matrices yield advantages of using the modeling ability of
Jpfs-matrices.

Definition 8: Let d : FPFSg[U] x FPFSg[U] — R be
a mapping. Then, for all [a;],[b;l,[c;j] € FPFSg[U], d is
quasi-metric over FPFSg[U] if and only if d satisfies the
following properties:

i) d(lal, [bij]) = 0 < [a;] = [by]

ii) d(lail), [bij]) < d(lay), [ci]) + d ey, [bij])

Definition 9: Let d : FPFSg[U] x FPFSg[U] — R
be a mapping. Then, for all [a;;),[bjl.[c;] € FPFSg[U], d
is semi-metric over FPFSE[U] if and only if d satisfies the
following properties:

i) d(lajl, [bij]) = 0 & [a;j] = [by]

it) d(lagl, [bi]) = d([by], [ai])

Definition 10: Let d : FPFSg[U] x FPFSE[U] — R be
a mapping. Then, for all [a;],[b;],[c;j] € FPFSE[U), d is
pseudo-metric over FPFSg[U] if and only if d satisfies the
following properties:

i) d([ajl, [ai]) =0

i) d(lajl, [bi]) = d([by], [a;])

iti) d([az], [by]) < d([ayl, [cij]) + dcqjl, [bi])

Definition 11: Let d : FPFSg[U] x FPFSE[U] — R be
a mapping. Then, for all [a;],[bjl.[c;j] € FPFSg[U], d is
metric over FPFSg[U] if and only if d satisfies the following
propetrties:

i) d(lajl, [bij]) = 0 & [a;j] = [by]

it) d(lagl, [bi]) = d([by], [ai])

iii) d(lay], [bij]) < d([ay], [cij]) +d([cii], [bi])

Secondly, we propose eight pseudo-metrics over
FPFSE[U] by using some distance measures of fuzzy soft
sets as given in [37], [38], [41] and present some of their basic
properties.

Proposition 12: The mapping di defined by

m—1 n
di([aj], [bif]) == Z Z laojaij — bojbij]
i=1 j=1
is a pseudo-metric over FPFSg[U] and is called Ham-
ming pseudo-metric. Moreover, the normalized Hamming
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pseudo-metric is as follows:

m—1 n
l)l’l Z Z |a0]a11 - b0jbl]|

i=1 j=1

di([ay), [by)) :
Proposition 13: The mapping d; defined by

bojbij|} }

U] and is called Chebyshev

dy(lay). [bj]) == max {max{lao]a,j
iehy—1 | jel

is a pseudo-metric over FPFSE[
pseudo-metric.
Proposition 14: The mapping d3 defined by

m—1 n

Z Z |a0jal] bO]sz|

i=1 j=1

d3([ay], [b

is a pseudo-metric over FPFSg[U] and is called Euclidean
pseudo-metric. Moreover, the normalized Euclidean pseudo-
metric is as follows:

m—1 n 2

ds(lag). [by)) = > lagjai; — bojbyl*
j=1

)n

i=1

Proposition 15: The mapping dy defined by

m—1 n 2

da(lag), by) =Y | Y lagjay — boibyl?

i=1 \j=I

is a pseudo-metric over FPFSg[U] and is called type-
2 Euclidean pseudo-metric. Moreover, the normalized type-
2 Euclidean pseudo-metric is as follows:

da(lag). [by]) :== - IZ Dao,au bojbi|”

Proposition 16: The mapping ds defined by

m—1

ds([ag), [byl) =Y max{|aga; — bobi}
=1 """

is a pseudo-metric over FPFSg[U] and is called Haus-
dorff pseudo-metric. Moreover, the normalized Hausdorff
pseudo-metric is as follows:

1 m—1
ds([aj], [by)) = mzl max(laoja; — bobil)
=
Proposition 17: The mapping dg defined by

1
m—1 n

d(ag). [bg)) == | D lagjay — bojbyl” |

i=1 j=1

peNT
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is a pseudo-metric over FPFSg[U] and is called Minkowski
pseudo-metric. Moreover, the normalized Minkowski pseudo-
metric is as follows:

m—1 n P

dg ([ayjl, [by]) = > laojai — bopbyl”
Jj=1

)I’l i=1
such that p € N
Proposition 18: The mapping dé’ defined by

1
m—1 n P

dY (gl b)) ==Y | Y laojay — boibyl” |

i=1 \j=1

peNTt

is a pseudo-metric over FPFSg[U] and is called type-
2 Minkowski pseudo-metric. Moreover, the normalized type-
2 Minkowski pseudo-metric is as follows:

Y [y, [by) = - {,/_Z Z |aojai; — bojbyl”

j=1

such that p € Nt
Proposition 19: The mapping dg defined by

m—1 P
df(laj], [by)) = (Z rj!gx{laoj'aij - bojbij|p}> . peNt
i=1 7"

is a pseudo-metric over FPFSg[U] and is called generalized
Hausdorff pseudo-metric. Moreover, the normalized general-
ized Hausdorff pseudo-metric is as follows:

& ([ay), [by)) = > max({lagja; — bojbl”)

1 m—1 P
Ym—1) <l,_1 jel )
such that p € NT

Proposition 20: For all [a;], [b;] € FPFSg[U] and p €
NT,
i. di([ag], [bj]) < (m— Dn
ii. dy(lajjl, [by]) < 1
iii. d3([aij], [by]) < /(m— Dn
iv. da(lag], [by]) < (m—1)/n
v. ds(lag], [bij]) < (m— 1)
Vi. dg([a,-j], [by]) < &(m = Dn
vii. dy(lag], [by]) < (m — 1)/n
viii. df(lai], [by]) < ¥m—1

Proof: The proof is straight forward from the proofs of

Proposition 12-19. O

Proposition 21: Let us consider the pseudo-metrics men-
tioned above. Then, the following conditions are held for all
[a;l,[bij] € FPFSg[U), k € {1,2,3,4,5}, t € {6,7,8},
p,reNt andp <r.

i. di([0], [1]) = L and d{ ([0], [1]) = 1

ii. d’ (lay). [by]) < d (lay]. [by])

Proposition 22: For all [a;j], [b;j] € FPFSE[U],

i. di(lag], [by]) = d§([ay), [by]) = d;([ag], [by])
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i d3([ag, [by]) = dg ([ay], [by])
iii. dy([aij], [by]) = d5([a], [bi])
iv. ds([ay], [by]) = dg(laj]., [bi)
Proposition 23: For all [a;], [bij] € FPFSg[U] and p €
NT,
i. [ail€lbi1<lcijl = (di(layl, [bi]) < di([ag], [c;iDA
di([byl, [eg)) < dilag], [cyD)
ii. [aij]S[bylClci] = (da(ayl, (b)) < da(la], [ciDA
da([bjjl, [ej]) < da(lay], lci])
iii. [ai]C[bjlClcijl = (d3(ayl, [bij]) < d3(lay], [ciDA
d3([bjj]. [cjj]) < d3([ay], [ci])
iv. [aj]C[by1< cij] = (dallay], [by]) < da(ag], [ciiDA
da([byj], [ej]) < da(lay], [ci])
v. [aij1Clbj1CIcijl = (ds(ag], [bi]) < ds(lajl, [ciDA
ds([bjj], [cij]) < ds([ag], [cii]))
vi. [ail€lbi1< cij] = (df ([ajl, [by]) < df ([aj], [ciDA
dE([byjl, [eij]) < di(layj], [ci])
vii. [ai]S[bj1Clciil = (dF(agl, [by]) < db(ag], [ciiDA
di byl [eij]) < d5(lajj], [ci])
viii. [ag1S[bi1< cii] = (df (ai), [byj]) < dg ([ai], [ciDA
di([byjl, [eij]) < di(lajj], [cii])
Example 24: For [a;j] and [b;j] provided in Example 4,

di([ai], [bi]) = 3.0900  di(la;], [bj]) = 0.3433
d(lay], [by]) = 0.8800  da([ayl, [by]) = 1.2425
d3([aj], [by]) = 04142 du(lay, [by]) = 2.0532
da(lag], by]) = 0.3951  ds(aj], [by]) = 1.7300
ds([ag], b)) = 0.5767  dZ(lay], [by]) = 0.9967
d3([aj, [by]) = 04791 d3([ay], [by]) = 1.8707
d3(lag), b)) = 0.4323  d(lag), [by) = 0.9502
&3 (], [by]) = 0.6589

IV. DISTANCE-BASED SIMILARITY MEASURES OF FUZZY
PARAMETERIZED FUZZY SOFT MATRICES
In this section, we first define concepts of quasi-similarity,
semi-similarity, pseudo-similarity, and similarity over
FPFSg[U] using pseudo-metrics of fpfs-matrices provided in
Section III. Thus, the modeling success of pseudo-metrics of
Jpfs-matrices can be transferred to the classification problems
in machine learning.

Definition 25: Let s : FPFSg[U] x FPFSg[U] — R be
a mapping. Then, for all [a;],[bjl.[c;j] € FPFSg[U], s is
quasi-similarity over FPFSE[U] if and only if s satisfies the
following properties:

i) slagl, [by) = 1 & lag] = [by)

ii) 0 < s(lay], [byD) < 1

Definition 26: Let s : FPFSg[U] x FPFSE[U] — R be
a mapping. Then, for all [a;],[bjl,[c;j] € FPFSg[U], s is
semi-similarity over FPFSg[U] if and only if s satisfies the
following properties:

i) s(lajl, (i) = 1 & [ay] = [by]

ii) s(laj], [bij]) = s([by], [a;])

Definition 27: Let s : FPFSg[U] x FPFSg[U] — R be
a mapping. Then, for all [a;],[bjl.[c;j] € FPFSg[U], s is
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pseudo-similarity over FPFSg[U] if and only if s satisfies the
following properties:
i) s(lagl, [a;]) =1

i) s(lajl, [bij]) = s([byj], [ai])

iti) 0 < s([ag], [by]) <1

Definition 28: Let s : FPFSg[U] x FPFSg[U] — R
be a mapping. Then, for all [a;],[b;l[c;j] € FPFSg[U],
s is similarity over FPFSg[U] if and only if s satisfies the
following properties:

i) s(lajl, [bj])) = 1 < [ay] = [by]

i) s([agl, [by]) = s([by], [a;])

iii) 0 < s(laj], [by]) < 1

Secondly, we propose eight pseudo-similarities over
FPFSg[U] by using the pseudo-metrics of fpfs-matrices
available in Section III and provide some of their basic
properties.

Proposition 29 [51]: The mapping s defined by

m—1 n

1
si(lagl, [by]) =1 — mz > lagjaij — bojbi

i=1 j=1

is a pseudo-similarity over FPFSg[U] and is called Ham-
ming pseudo-similarity.
Proof: The proof is straight forward from the proof of
Proposition 12. |
Proposition 30 [52]: The mapping s, defined by

Sz([a,:/], [b,/]) =1- max {max {|aQ/a,~J~—bojb,:/|}}
iely,—1 | jeln

is a pseudo-similarity over FPFSE[U] and is called Cheby-
shev pseudo-similarity.

Proof: The proof is straight forward from the proof of
Proposition 13. U

Proposition 31: The mapping s3 defined by
1

m—1 n 2

_ ! b2
s3(lag]. ) = 1= — e ; ]_Zl |agjas; —bojbi
is a pseudo-similarity over FPFSg[U] and is called
Euclidean pseudo-similarity.
Proof: The proof is straight forward from the proof of
Proposition 14. O
Proposition 32: The mapping s4 defined by

1

2

1 m—1 n
A bi)=1——m8— i — bo:bii|?
S4([alj] [ l]]) (m_ 1)\/%; ;'aO]al] 0j lj|

is a pseudo-similarity over FPFSg[U] and is called type-
2 Euclidean pseudo-similarity.
Proof: The proof is straight forward from the proof of
Proposition 15. U
Proposition 33: The mapping ss5 defined by
m—1

1
ss(lagl, [byl) =1 — mzl max{lagjay; — bob)
1=
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is a pseudo-similarity over FPFSg[U] and is called Haus-
dorff pseudo-similarity.
Proof: The proof is straight forward from the proof of
Proposition 16. 0
Proposition 34: The mapping s’g defined by

m—1 n P

)n ZZWO]aU bOjbl]|

i=1 j=1

sk(lagl, [y :=1—

is a pseudo-similarity over FPFSg[U] and is called
Minkowski pseudo-similarity. Here p € NT.
Proof: The proof is straight forward from the proof of
Proposition 17. g
Proposition 35: The mapping s"77 defined by

m—1 n P

1
shlagl, byl = 1— pr—y ; ; |agjai; —bojbij|”

is a pseudo-similarity over FPFSE[U] and is called type-
2 Minkowski pseudo-similarity. Here p € N¥.

Proof: The proof is straight forward from the proof of

Proposition 18. 0
Proposition 36: The mapping s‘g defined by

P
Sg([azj] bijhD=1- max |a0]alj_b0]bt]| }>

(e
is a pseudo-similarity over FPFSE[U] and is called general-
ized Hausdorff pseudo-similarity. Here p € NV,
Proof: The proof is straight forward from the proof of

Proposition 19. O

Proposition 37: Let [a;], [bjj] € FPFSE[U]. Then, for all
lajl, [by), k € {1,2,3,4,5},t € {6,7,8}, p,r € N*, and
p=r,

i. s ([0], [1]) = 0 and 5 ([0], [1]) =

ii. s7(agl, [bz]) = s;([ag], [by])

Proposition 38: For all [a;], [b;;] € FPFSE[U],

L. Sl([alj] [blj]) =59 ([ay] [b 1/]) = 57([511/] [blj])
it. s3([agj], [by]) = sglayl, [byj])
iii. s4([ag], [by]) = s7([ag], [bi])

iv. ss([ay], [by]) = sg([ay], [by])

Proposition 39: For all |ajj], [b], [cij] € FPFSE[U] and
p eNT,
i. [aj1CIbiICleijl = (s1([ajl, [ci]) < s1(ai], [biDA
s1(lajl, [ej]) < s1([by], [ci])
ii. [aglClbi1Clcy] = (s2(lagl, [ez]) < s2lagj], [byiDA
sa([aijl, [ei]) < sa2([bjj], [ci])
iii. [aij1C[bj1C[cijl = (s3([ai, [ci]) < s3([ag], [bDA
s3(lay), [egD) < s3((byl, [e])
iv. [aijlSlbil<lej] = (sa(lay], [cj]) < saaj], [bDA
sa(lajl. [eyj]) < sa([by], [ci])
v. [ajlCIbi1< cij] = (ss(la], [cij]) < ss(lai], [biiDA
ss(ag, [egD) < ss5((byl, [ej])
vi. [ailClbj1<lcij] = (sklayl, [cy]) < sklayl, [biDA
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sp([alj] [Cl] ) < Sg( bl]] [cl]]))
i [aglSlbICleyl = (s5agl, [eg)) < sh(ayl, [bhA
sp([ay] [Cl] ) < Sg( bl]] [cl]]))
Viil. [alj] bl]]c[clj] = ( ( al]] [Czj]) = 51;([azj]a [bij])/\
sp([ay] [Cl] ) < Sg( l] [cij]))
Proof: The other proofs are straight forward from the
proof of Proposition 23. (|
Example 40: For [a;j] and [b;;] provided in Example 4,
s1(la], [b;]) = 0.6567  s2([aj], [b;]) = 0.1200
s3([ag], [bi]) = 0.5858  s4(lajj], [b]) = 0.6049
ss([aif], [by]) = 0.4233 s3([a,-j], [b;]) = 0.5209
s%([aij], [b;j]) = 0.5677  sg([aj], [bi]) = 0.3411

V. FUZZY PARAMETERIZED FUZZY SOFT EUCLIDEAN
CLASSIFIER (FPFS-EC)
In this section, we first present the definitions and notations
occurring in FPFS-EC. Across the present paper, let D =
[dijlmxn+1) denotes a data matrix and its last column contains
class labels of the data. Here, m and n stand for the number
of the samples and the number of the attributes in the data
matrix, respectively. (Dirain)m;xn> (Chmyx1, and (Dregs )y xcn
represent the training matrix, class labels of the train matrix,
and the test matrix obtained from D, respectively such that
my + my = m. Di_yain and Dj_es; denote i row of Dyygin
and Dy, respectively. Similarly, Dyyqin—;j and Dyes—j denote
th column of Dyygin and Dyeg;, respectively. T;,,x1 stands for
assigned class matrix obtained from Dy, and Dy . Let Iy,
denote the set of all unsigned integer numbers from 1 to m,
ie. I, :=={1,2,...,m}. Similarly, let [} := {0, 1,2, ..., m}.
Definition 41: Let u,v € R". Then, the Pearson correla-
tion coefficient between u and v is defined by

P(u, v)

_ ”Z:‘l—l uivi — (Z"l— ui)(z;l:l Vi)

ISy = (T wP] [ i v = (i v

Definition 42: Let Dyqin has order my x n and Cy, x1 be
the class column vector of Dyqgin. fw is called the feature
weight vector based on the Pearson correlation coefficient of
Dyrain and is defined by

Swj = |P (Dtrain—j, C)
Definition 43:; Let Dy, has order my x n and D5 has

order my X n. Dyqin is called the feature fuzzifications of
Dyyain and is defined by

dij—train - Hrllyn{drj—tmim dsj—test}

dii—train =
ij—train - .
n}%x{drj—tmina dsj—test} - n;nsn{dry'—tmina dsj—test}
suchthati, v € Ly, s € Iy, and j € I.

Definition 44: Let Dyqin has order my X n and Dyes has

ordermy X n. btm is called the feature fuzzifications of Dyest,
and is defined by

dijftest - n;nvn{drjftruin’ dsjftext}

dijftest =

n}agx{drj—trainv dsj—test} - Ilrlisll{d(i—trainv dsj—test}
suchthatr € Ly, i,s € Iy, and j € I.
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We then propose a new classification algorithm, i.e. FPFS-
EC, via Euclidean pseudo-similarity defined in Section IV.
FPFS-EC uses the Pearson correlation coefficient to obtain
feature weight based on parameters’ impact on classification.
After that, it constructs two fpfs-matrices, i.e. train fpfs-matrix
and test fpfs-matrix, via normalized train sample, normalized
test sample, and feature weights. Next, the proposed classifier
assigns the class label of the train sample, whose Euclidean
pseudo-similarity to the test sample is at the highest level,
to the test sample. This process proceeds similarly for all the
test samples. Finally, the assigned class matrix of the test
data is constructed. Its algorithm steps (Algorithm 1) and
flowchart (Fig. 1) are as follows:

Algorithm 1 FPFS-EC’s Pseudocode
IHPUt: (Dlmin)ml ><nva1 x1s and (Dtest)m2 Xn
Output: T, <1
1: procedure FPFSEC(Dy4in, C, Diest)
Compute fiv using Dy4in and C
3: C~0rnput6 fe~ature fuzzification of Dy, and Dyeg,
i.e., Dygin and Dyeg
: for i from 1 to my do
50 Compute the test fpfs-matrix [a;;] using fw and
Di—_test
for j from 1 to m; do
~ Compute the train fpfs-matrix [b;;] using fiw
and D, j—train

8: smj1 < s3(lag], [bij]) > [sm;1] represents
similarity matrix
9: end for
10: w < argmax {sm; }
j»elm1
11: ti1 < the class of w
12: end for

return 7, « 1
13: end procedure

VI. EXPERIMENTAL STUDY

This section presents the properties of the 18 classification
datasets in the UCI Machine Learning Repository [50].
We then offer five performance metrics for performance eval-
uation in machine learning. Next, we perform some exper-
iments to show that our proposed method is more efficient
than SVM [49], Fuzzy kNN [47], FSSC [44], FussCyier [45],
HDFSSC [46], and BM-Fuzzy kNN [48]. Finally, we provide
the statistical evaluation of the experimental results based on
the Friedman test [53] and the Nemenyi post-hoc test [54].

A. UCI DATASETS AND PERFORMANCE MEASURES

In Table 2, we firstly present the properties of the datasets [50]
used in the simulation herein: “Breast Cancer Wiscon-
sin (Diagnostic)”, “Breast Tissue”’, “Diabetic Retinopathy
Debrecen”, “Immunotherapy’’, “Breast Cancer Coimbra”,
“Parkinsons[sic]”’, ‘“Connectionist Bench (Sonar, Mines
vs. Rocks)”, “Wine”, “Statlog (German Credit Data)”,
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Read (Dyrain )y xn » Cmyx1, and (Diest Jmy xn

v

| Compute fw using Dyygin and C |

| compute D trgin and D req |

}

For ¢ from 1 to my <

lNext

Compute test fpfs-matrix [a,-j] using
fwand Di_teq

Done

A 4

. Done i
For j from 1 to my W a!;%]ma.x {sm;}
iny
Next l

t;1 < theclassofw [

Y

Compute train fpfs-matrix [b;;]

using fw and D j_train

A

Compute Euclidean Pseudo-Similarity
sy < s3([aij], [bij])

-

Return Assigned Class Matrix T",2 «1

FIGURE 1. The flowchart of FPFS-EC.

“Hayes-Roth™, “Iris”’, “Mice Protein Expression”, *“‘Parkin-
son’s Disease”, “Teaching Assistant Evaluation”, ‘““Vehi-

cle”, “Semeion Handwritten Digit”, “lonosphere”, and
“Connectionist Bench (Vowel Recognition-Deterding
Data)”.

We subsequently provide the mathematical notations
of five performance metrics, i.e. accuracy (Acc), preci-
sion (Pre), recall (Rec), macro F-score (MacF), and micro
F-score (MicF), to compare the aforementioned methods.
Let X = {x1,%0,....%}L Y = {Y,Y,....Y,}, ¥ =
{3?{1, Yg, el YA{',,}, and / be n samples to be classified, ground
truth class sets of the samples, prediction class sets of the sam-
ples, and the number of the class of the samples, respectively.

TP; + TN;

. 1
Ace(Y, ) := - >

A 1
Pre(Y,Y) := 7

l
. 1
Rec(Y, Y) := 7 Z TP EN.
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TABLE 2. Description of UCI data sets.

No. Name #Instance #Attribute #Class
1 Wisconsin 569 30 2
2 Breast Tissue 106 9 6
3 Diabetic Retinopathy 1151 19 2
4 Immunotherapy 90 7 2
5 Coimbra 116 9 2
6 Parkinsons|[sic] 195 22 2
7 Sonar 208 60 2
8 Wine 178 13 3
9 German Credit 1000 20 2
10 Hayes-Roth 132 5 3
11 Iris 150 4 3
12 Mice 1077 72 8
13 Parkinson’s Disease 756 754 2
14 Teaching 151 5 3
15 Vehicle 846 17 4
16 Semeion 1593 265 2
17 Tonosphere 351 34 2
18 Vowel 990 13 11

# stands for the number of.

MacF(Y, Y) :

1 X’: TP
l P 2TP; + FP; + FN;
23 TP

Mick(y, ) := 25 TP, I FP; I FN;
Y1 TP+ i FPi+ ) i FN;

where TP;, TN;, FP;, and FN; are the number of true positive,
true negative, false positive, and false negative for the class i,
respectively and their mathematical notations are as follows:

TP; = {xtueYtAieYt,lgtgz}

N, = {x,|i¢Yt/\i¢SY,,15t51

FP; = {xt|i¢Yl/\ie§(,,1§t§l}

FN; := {x,|ieY,/\i¢§(,,1§t§l

B. SIMULATION RESULTS

In this part of the present study, we focus on the compar-
ison between our proposed FPFS-EC and the well-known
methods, i.e. SVM [49] and Fuzzy kNN [47], and other
the state-of-the-art classifiers based on fuzzy sets or soft
sets, i.e. FSSC [44], FussCyier [45], HDFSSC [46], and
BM-Fuzzy kNN [48]. We simulate the algorithms by utilizing
MATLAB R2020b and a workstation with I(R) Xeon(R)
CPU E5-1620 v4 @ 3.5 GHz and 64 GB RAM. Each
classifier is trained and tested by means of the k-fold
cross-validation [55], [56].

88590

In the simulation, we carry out 5-fold cross-validation and
record the mean results for 5 iterations. In each iteration in
cross-validation, the training and testing phase is carried out
independently from other stages. Finally, We repeat this pro-
cess 30 times and obtain the mean accuracy, precision, recall,
macro F-score, micro F-score, and running time results.

Table 3 presents accuracy, precision, recall, macro F-score,
micro F-score, and running time results of the methods

for “Wisconsin”, “Breast Tissue”, “Diabetic Retinopa-
thy”, “Immunotherapy”, “Coimbra”, “Parkinsons[sic]”,
“Sonar”, “Wine”, “German Credit”, “Hayes-Roth”,

“Iris”, “Mice Protein’, ‘“Parkinson’s Disease”, ‘“‘Teach-
ing”, “Vehicle, “Semeion”, “lonosphere”, and ‘“Vowel”
datasets. In “Wisconsin”, “‘Parkinsons[sic]”’, ‘“Wine”,
“Parkinson’s Disease”, ‘““Semeion”, ‘lonosphere”, and
“Vowel” datasets, FPSEC exhibits the best performance
by about 95% in terms of all the performance metrics.
Especially in “Parkinsons[sic]”, ‘“Parkinson’s Disease”,
“Hayes-Roth”, “Vowel”” datasets, FPFS-EC outperforms the
others to a great extent. In the case of improving FPFS-EC,
FPFS-EC is believed to be capable of exhibiting better perfor-
mance in these four datasets. In the other datasets too, where
the overall performance results are not over 90%, FPFS-EC
outperforms the others. Besides, in “Mice Protein” dataset,
the performance of FPFS-EC, just as of SVM and HDFSSC,
is 100% as far as the performance metrics are concerned.

FPFS-EC achieves remarkable classification success
thanks to its using Euclidean pseudo-similarity of fpfs-
matrices based on the Pearson correlation coefficient and
evaluating all the train samples separately. On the other hand,
evaluating all the train samples separately results in FPFS-
EC’s running slightly slower than the others. Although FPFS-
EC, in general, seems to operate slightly slower than the other
classifiers except for SVM and BM-Fuzzy kNN, classifying
all the test samples in a considered dataset takes about from
0.00414 to 2.17023 seconds.

Table 4 provides the scores concerning the performance
advantages of FPFS-EC over the other classifiers for all the
datasets. The results show that FPFS-EC produces the best
scores in the datasets in terms of accuracy, precision, recall,
macro F-score, and micro F-score performance. In Table 4,
FPFS-EC performs notably better in ‘‘Parkinsons[sic]”,
“Parkinson’s Disease”, and ‘“‘Hayes-Roth”, datasets than
the others do, just as FPFS-EC in Table 3. For example,
in “Parkinson’s Disease” dataset, the accuracy, precision,
recall, macro F-score, and micro F-score values concerning
its performance advantages over the classifier with the nearest
score are 19.24%, 17.50%, 32.75%, 6.40%, and 19.24%,
respectively. Similarly, the values are 11.99%, 15.70%,
16.06%, 16.10%, and 17.98% in “Hayes-Roth” dataset and
8.51%, 7.03%, 18.16%, 14.54%, and 8.51% in ‘‘Parkin-
sons[sic]”’ dataset.

Figure 2 presents the graphical results concerning the
accuracy, precision, recall, macro F-score, micro F-score,
and running time performances of the compared classifiers
in Table 3. As the figure reveals, FPFS-EC outperforms SVM,
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TABLE 3. Comparative results for the datasets.

Datasets Classifiers Ace£SD Pre £SD Rec+SD MacF+SD MicF+SD Running Time +SD
SVM 95.30+1.92 95.0942.03 94714223 95.0042.08 95.30+1.92 2.26340+0.04540
Fuzzy kNN 91.58+2.37 91.56+2.50 90.45+2.81 90.8742.62 91.58+2.37 0.00605+0.00113
FSSC 93.634+1.93 93.44+2.15 93.0042.13 93.1542.07 93.634+1.93 0.00126+0.00315
Wisconsin FussCyier 93.60+1.83 94.384+1.85 92.0742.27 92.9842.05 93.60+1.83 0.00053+0.00080
HDFSSC 92.9041.91 93.1042.09 91.7542.24 92.29+42.10 92.9041.91 0.00075+0.00108
BM-Fuzzy kNN 91.86+2.10 91.414+2.28 91.35+2.34 91.3042.25 91.8642.10 0.16708+0.00818
FPFS-EC 95.34+1.51 95.18+1.67 94.92+1.70 95.011+1.62 95.34+1.51 0.18110+0.00619
SVM 88.1843.12 66.19410.81 63.471+9.64 68.2048.32 64.1549.35 2.576184-0.63478
Fuzzy kNN 84.3943.49 57.24410.89 51.814+10.72 57.514+8.89 53.174£10.46 0.00043+0.00023
FSSC 87.76+2.87 63.73410.26 61.6948.79 66.3518.28 63.2848.61 0.00044+0.00021
Breast Tissue FussCyier 86.7542.85 61.401+9.04 58.8548.95 64.28+8.31 60.25+8.56 0.00020+0.00018
HDFSSC 87.3442.80 66.2619.47 61.071+8.43 64.1518.02 62.0148.40 0.00029+0.00018
BM-Fuzzy kNN 87.25+£3.37 63.14412.06 60.24410.65 64.32£8.44 61.74410.12 0.01225£0.00407
FPFS-EC 88.25+2.96 66.671+9.29 63.571+9.26 70.37+7.56 64.751+8.88 0.00445+0.00171
SVM 74.2212.88 75.174-2.88 74.7312.86 74.17+2.90 74.22+2.88 6.33758 +£0.18442
Fuzzy kNN 62.0442.63 61.9942.63 61.97+2.62 61.914+2.63 62.0442.63 0.01790+0.00053
FSSC 57.4343.01 57.66+3.04 57.6313.03 57.4043.01 57.4343.01 0.0017240.00006
Diabetic Retinopathy FussCyier 57.0242.93 57.3242.96 57.284+2.94 56.9842.93 57.0242.93 0.00067£0.00002
HDFSSC 56.8843.11 57.0543.13 57.0413.13 56.8413.12 56.88+3.11 0.0011040.00004
BM-Fuzzy kNN 64.9042.93 64.84+2.96 64.7542.93 64.714£2.94 64.9042.93 0.21462+0.00991
FPFS-EC 65.54+2.64 65.631+2.66 65.6242.64 65.4842.63 65.5442.64 0.7334340.03136
SVM 80.67+6.90 77.071+20.89 58.79410.62 77.761+10.84 80.6716.90 0.31092+0.00080
Fuzzy kNN 60.8248.57 43.024£8.05 43.58+8.94 63.63414.06 60.824:8.57 0.0002240.00008
FSSC 61.06410.50 61.38+7.52 65.89110.70 56.7249.38 61.06410.50 0.0002140.00001
Immunotherapy FussCyier 67.02410.16 62.891+9.48 67.48412.24 61.384+10.30 67.02410.16 0.000110.00001
HDFSSC 65.20410.29 61.96+8.94 66.79412.27 60.05+10.21 65.20410.29 0.0001540.00001
BM-Fuzzy kNN 64.15+10.11 474541139 46.911+10.33 63.171+13.45 64.15410.11 0.00734+0.00144
FPFS-EC 75.91£9.57 65.494-15.46 67.561+13.34 67.02412.42 75.91£9.57 0.00447£0.00029
SVM 72.4317.68 73.274+7.91 72.731+7.86 72.08+7.86 72.431+7.68 0.8373740.02639
Fuzzy kNN 54.0349.32 53.5249.65 53.3049.20 52774937 54.0349.32 0.00039+0.00023
FSSC 62.764-8.48 67.331+8.90 64.6918.06 61.7149.09 62.76+8.48 0.0002140.00016
Coimbra FussCyier 61.3548.37 67.2149.03 63.731+7.88 59.6949.49 61.354+8.37 0.00013+0.00012
HDFSSC 59.60£9.32 62.564-10.28 61.1049.16 58.7149.83 59.6049.32 0.000160.00011
BM-Fuzzy kNN 53.7549.17 53.95+9.72 53.844+9.24 53.1149.11 53.7549.17 0.011184+0.00136
FPFS-EC 68.2449.53 68.731+9.80 68.1149.54 67.68+9.70 68.2449.53 0.00414+0.00059
SVM 86.56+4.19 86.29+7.07 76.09+7.02 78.9447.20 86.56+4.19 0.821344£0.19197
Fuzzy kNN 84.234+4.94 79.5046.87 79.324+7.44 78.761+6.73 84.231+4.94 0.00070+0.00011
FSSC 73.83£5.81 72.5844.24 79.8245.45 71.4745.62 73.8345.81 0.00040£0.00003
Parkinsons|sic] FussCyier 74.1245.76 73.2943.82 80.81+4.84 71.95+5.47 74.1245.76 0.0001940.00003
HDFSSC 78.41£5.52 75.08+4.65 82.14+542 75.5445.61 78.4145.52 0.00026+0.00004
BM-Fuzzy kNN 79.50+5.77 73.284+7.04 74.81+8.16 73.364+7.42 79.5045.77 0.04341£0.00233
FPFS-EC 95.08+3.55 93.324+4.81 94.25+4.83 93.481+4.64 95.08+3.55 0.0212340.00091
SVM 78.03£5.56 79.0945.79 77.5145.59 77.5245.69 78.03£5.56 0.015224£0.00041
Fuzzy kNN 82.2445.80 82.81+5.67 81.91+5.99 81.93+6.04 82.2445.80 0.00159+0.00012
FSSC 75.08+7.11 75.79+7.24 74.5647.23 74.50£7.40 75.08+7.11 0.00047+0.00005
Sonar FussCyier 71.58+7.15 73.254+7.35 72.2447.13 71.364+7.22 71.58+7.15 0.0002440.00001
HDFSSC 70.124£7.98 70.4618.06 70.1748.07 69.89+8.11 70.1247.98 0.00033+0.00002
BM-Fuzzy kNN 82.8245.62 83.30£5.56 82.76£5.68 82.65+5.73 82.8245.62 0.10805+0.00374
FPFS-EC 87.15+4.58 87.88+4.44 86.801+4.72 86.931+4.74 87.151+4.58 0.0259140.00096
SVM 97.0841.91 95.85+2.78 95.7942.76 95.6542.83 95.6142.87 0.45670+0.18431
Fuzzy kNN 85.2943.58 62.324+12.30 71.931+6.63 72.3046.77 73.2046.38 0.0004940.00011
FSSC 96.34+2.37 94.9743.02 95.414+2.96 94.75+3.44 94.5243.56 0.00044+0.00002
Wine FussCyier 96.384+2.47 94.9243.41 95.3043.26 94.8043.58 94.57£3.70 0.000170.00001
HDFSSC 95.4642.61 93.65+3.70 93.93+3.56 93.48+3.79 93.1943.91 0.0002740.00001
BM-Fuzzy kNN 82.57+4.52 73734731 73.0616.68 72.5446.98 73.8546.79 0.02270+0.00145
FPFS-EC 97.55+2.00 96.5042.71 96.93+2.51 96.4742.92 96.3243.01 0.0175340.00091
SVM 58.01+11.94 55.76+6.79 55.4016.53 53.3948.85 58.01411.94 6.37604+0.37067
Fuzzy kNN 61.2042.89 53.71£3.20 53.6843.21 53.61£3.20 61.2042.89 0.01384£0.00118
FSSC 63.45+3.28 62.131+3.00 62.274+3.57 61.2243.23 63.45+3.28 0.00156+0.00024
German Credit FussCyier 63.58+3.29 62.131+3.02 64.241+3.59 61.28+3.25 63.58+3.29 0.00061+0.00009
HDFSSC 64.9443.56 62.01£3.37 63.824+3.90 61.8443.60 64.9443.56 0.00097+0.00015
BM-Fuzzy kNN 62.1543.01 54.874+3.26 54.8043.23 54734323 62.1543.01 0.1941040.00559
FPFS-EC 69.18+2.94 63.231+3.46 64.9843.36 63.02+3.37 69.18+2.94 0.55650+0.02603

Acc, Pre, Rec, MacF, and MicF results and their standard deviations (SD) are presented in percentage. Running time and its SD are presented in seconds. The best performances are

shown in bold.
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TABLE 3. (Continued.) Comparative results for the datasets.

Datasets Classifiers Acc£SD Pre +SD Rec+SD MacF+SD MicF+SD Running Time+SD
SVM 73.84£4.86 66.5046.88 62.07£7.61 62.8747.11 60.75£7.29 0.1228440.11463
Fuzzy kNN 65.65+7.08 33.63+12.51 35.86+7.36 40.5447.10 39.39+7.43 0.0003240.00010
FSsC 70.08£7.02 5827411.56 57.55£10.14 54.99410.03 55.124£10.53 0.000350.00002
Hayes-Roth FussCyier 72.65+8.10 62.66+12.65 59.15+11.84 59.24411.63 58.98+12.15 0.0001440.00001
HDFSSC 69.35£6.11 57.4349.17 56.71£9.25 56.0318.93 54.024£9.17 0.000210.00001
BM-Fuzzy kNN 61.43+5.44 45.06+13.43 39.40+38.01 42.0247.95 42.1448.16 0.0089740.00257
FPFS-EC 85.8245.01 82.1947.25 78.131+7.76 78.9847.67 78.74+7.52 0.0096240.00062
SVM 98.18+1.83 97.5442.51 97.274+2.75 97.25+2.77 97.274+2.75 0.0646510.00406
Fuzzy kNN 95.09+£1.94 69.70411.04 89.53+£4.50 91.9743.95 89.53+£4.50 0.000360.00011
FSSC 96.8042.39 95.5543.39 95.2043.59 95.18+3.62 95.2043.59 0.0003740.00002
Iris FussCyier 96.95+2.38 95.8043.32 95.4243.57 95.4043.60 95.4243.57 0.0001540.00001
HDFSSC 97.33+£2.24 96.3143.15 96.0043.37 95.984:3.39 96.0043.37 0.0002240.00001
BM-Fuzzy kNN 96.98+£2.17 95.8743.05 95.47+£3.26 95.4443.28 95.4743.26 0.0079540.00129
FPFS-EC 97.3542.15 96.4042.91 96.0243.22 96.0043.26 96.0243.22 0.0120040.00047
SVM 100.00£0.00 100.00-£0.00 100.00£0.00 100.00-£0.00 100.00+0.00 1.73284 +0.02842
Fuzzy kNN 99.1240.16 56.7444.12 93.1941.39 96.224-0.85 93.7841.27 0.0222040.00226
FSSC 98.67+£0.42 94.9841.58 94.88+1.63 94.81+1.65 94.67+1.67 0.0061940.00172
Mice Protein FussCyier 98.7440.41 95.3041.55 95.2041.59 95.1241.62 94971 1.64 0.0014340.00026
HDFSSC 100.00+0.00 100.00-£0.00 100.00£0.00 100.00-£0.00 100.00+0.00 0.0032940.00098
BM-Fuzzy kNN 99.9840.04 99.944-0.17 99.9340.17 99.9340.17 99.9340.17 0.756640.03485
FPFS-EC 100.0010.00 100.00-£0.00 100.00£0.00 100.00-£0.00 100.00£0.00 0.7302040.03058
SVM 74.6040.29 74.6040.29 50.00£0.00 85.45£0.19 74.6040.29 0.038640.00430
Fuzzy kNN 69.05+£2.97 59.17£3.70 59.08+3.77 59.00£3.71 69.05+£2.97 0.18199£0.00516
FSsC 38.5046.37 47354427 47.51+4.28 37.8945.94 38.50£6.37 0.0111940.00014
Parkinson’s Disease FussCyier 61.54+16.49 45994532 48544197 44.51£13.16 61.54+16.49 0.00993+0.00013
HDFSSC 61.83£16.52 46.5246.21 48.6312.17 44.67413.09 61.83£16.52 0.0105240.00013
BM-Fuzzy kNN 50.58+3.75 51.0643.10 51.38+4.04 47.5343.38 50.5843.75 5.8981140.16920
FPFS-EC 93.8411.81 92.1142.66 91.831+2.74 91.864-2.39 93.8411.81 0.7488240.01312
SVM 68.57+5.23 54.5147.89 53.0247.83 51734838 52.8547.85 0.1448440.04950
Fuzzy kNN 76.16£5.38 50.30410.52 57.77£7.98 58.1648.18 57.79+£8.04 0.0004040.00012
FSSC 63.3545.38 48.90+13.79 45.624+8.07 44214847 45.031+8.07 0.0003840.00002
Teaching FussCyier 63.40£5.37 49.00412.92 45.681+8.05 43.6518.08 45.1118.06 0.0001620.00001
HDFSSC 69.5545.07 55744825 54.5347.60 53.674+7.76 54.3347.60 0.0002340.00002
BM-Fuzzy kNN 61.12£5.49 41.7848.79 41.7418.19 41.0548.28 41.68+8.23 0.0109340.00259
FPFS-EC 76.76+5.45 65.44+8.59 64.101+8.18 63.77+8.36 64.231+8.17 0.0122440.00042
SVM 89.14+1.23 78.554-2.56 78.511+2.46 78.3042.50 78.2942.47 3.9666040.58215
Fuzzy kNN 8435+1.16 42254237 59.73+3.18 61.0543.04 59.2743.20 0.0095240.00060
FSsC 69.67+£1.63 39.8244.58 40.1043.28 36.4943.70 39.35+£3.25 0.00218+0.00020
Vehicle FussCyier 69.79+1.69 40.154-4.94 40.3613.40 36.4743.92 39.5743.38 0.0006040.00004
HDFSSC 70.48£1.69 42.0644.11 41.6243.40 39.3143.60 40.96+3.39 0.0012040.00012
BM-Fuzzy kNN 84.2841.54 67.6943.06 68.1343.04 67.6943.03 67.5543.07 0.1393440.00483
FPFS-EC 86.08+£1.44 67774291 68.50+2.84 67.9742.85 68.16+2.87 0.3959040.02085
SVM 97.4740.69 94944251 89.5042.55 92.4241.98 97.4740.69 0.1567510.03688
Fuzzy kNN 96.52+£2.27 91.96+12.87 88.05+4.49 89.78+4.32 96.5244.49 0.300630.00010
FSsC 44.031+2.45 57.5043.52 68.8643.67 40.5243.67 44.0313.67 0.010410.00003
Semeion FussCyier 76.15+£2.47 64.0243.55 84.36+3.71 64.48+3.70 76.15£3.71 0.007860.00001
HDFSSC 89.5142.63 73.5443.76 88.2843.94 78.0643.94 89.5143.94 0.00858+0.00002
BM-Fuzzy kNN 97.04£0.74 95.94£1.07 85.40+3.68 90.38£2.75 97.0440.74 3.5296110.15261
FPFS-EC 97.511+2.78 96.1914.20 89.551+4.16 92.4544.28 97.511+4.16 2.1702340.00129
SVM 86.90+3.65 88.831+3.95 83.06+4.56 84.71+4.43 86.90+3.65 0.02434£0.00151
Fuzzy kNN 84.70£3.40 88.64£3.31 79.36£4.56 81.39:+£4.63 84.70£3.40 0.0033740.00064
FSSC 64.10+0.36 64.1040.36 50.0040.00 78.1340.27 64.1040.36 0.0005540.00019
Tonosphere FussCyier 64.10£0.36 64.1040.36 50.0020.00 78.1340.27 64.10£0.36 0.0002940.00011
HDFSSC 64.10£0.36 64.104:0.36 50.0040.00 78.134£0.27 64.10£0.36 0.0004010.00014
BM-Fuzzy kNN 81.17£4.02 82.04£5.05 76.54+4.84 77.8744.95 81.17£4.02 0.1347140.01031
FPFS-EC 89.56+3.22 91.8142.70 86.061+4.35 87.824-4.04 89.561+3.22 0.03336+0.00467
SVM 96.37£0.41 81.10£2.20 80.02£2.27 79.9142.29 80.02£2.27 2.9853940.04392
Fuzzy kNN 99.20+0.27 95.8441.43 95.6311.50 95.5741.52 95.631+1.50 0.0119610.00144
FSsC 89.40£0.57 44714425 41.7243.14 40274328 41.7243.14 0.0044240.00086
Vowel FussCyier 90.47+0.54 48.2443.48 47.6013.00 46.0543.17 47.6043.00 0.0008840.00017
HDFSSC 90.40£0.61 47.6843.83 47.2243.33 45.8143.52 47.2243.33 0.0024040.00041
BM-Fuzzy kNN 85.36+£0.47 18.7843.43 19.4642.60 22.1843.16 19.4642.60 0.16896+0.00793
FPFS-EC 99.671+0.18 98.284-0.90 98.161+0.97 98.164-0.97 98.161+0.97 0.2182940.01606
SVM 84.20+3.57 80.02£5.32 75.70+4.73 79.194+4.79 79.624+4.47 1.6239840.13914
Fuzzy kNN 79.76£3.79 65.224-6.87 69.23+5.35 71.5045.42 72.68£5.01 0.031800.00079
FSsC 72.5544.00 66.6845.37 66.4744.98 64.4345.12 64.60£5.16 0.0023840.00040
Mean Performance Results FussCyier 75.84+£4.59 67.3445.45 67.68+£5.01 66.5445.65 68.14+£5.78 0.0013540.00011
HDFSSC 76.86+4.57 68.0845.14 68.384+4.96 68.0345.50 69.5145.65 0.0017440.00019
BM-Fuzzy kNN 77.05+3.90 66.9045.71 65.55+5.39 66.8945.36 68.32+4.98 0.6353310.02357
FPFS-EC 87.161+3.41 82.944-4.80 81.951+4.78 82.3614.63 83.541+4.34 0.3266310.00872

Acc, Pre, Rec, MacF, and MicF results and their standard deviations (SD) are presented in percentage. Running time and its SD are presented in seconds. The best performances are
shown in bold.
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TABLE 4. FPFS-EC's performance advantages over the other classifiers for the datasets.

Datasets Classifiers Acc Pre Rec MacF MicF
FPFS-EC versus SVM 0.05 0.09 0.21 0.00 0.05
o FPFS-EC versus Fuzzy kNN 376 3.3 447 414 376
Wisconsin FPFS-EC versus FSSC 172 1.75 1.92 1.85 1.72
FPFS-EC versus FussCyier 174 0.80 2.85 2.03 172
FPFS-EC versus HDFSSC 244 2.09 3.17 272 244
FPFS-EC versus BM-Fuzzy kNN 348 378 3.57 371 348
FPFS-EC versus SVM 0.07 0.48 0.10 2.17 0.60
. FPES-EC versus Fuzzy kNN 3.86 9.44 11.76 12.86 11.58
Breast Tissue FPFS-EC versus FSSC 0.49 294 1.88 4.02 A7
FPFS-EC versus FussCyier 1:50 527 472 6.09 4.50
FPFS-EC versus HDFSSC 0.91 0.41 2.50 6.22 274
FPFS-EC versus BM-Fuzzy kNN 1.00 3.53 333 6.05 301
FPFS-EC versus SVM -8.68 9.54 9.11 -8.69 -8.68
. . . FPFS-EC versus *uzzg kNN 3.51 3.64 3.65 3.58 351
R i & i i 1
versus FussCyier . . 3 S 5
EC versus HDFSSC 8.66 8.58 8.58 8.04 8.66
EC versus BM-Fuzzy kNN 0.64 0.80 0.88 0.77 0.64
FPFS-EC versus SVM -4.76 -11.58 22.98 -10.74 476
FPFS-EC versus ‘uzze/ kNN 15.09 22.46 2398 3.39 15.09
R vy i bis i
versus FussCyier . . g .
FPES-EC versus HDFSSC 10.71 352 0.77 6.97 10.71
FPFS-EC versus BM-Fuzzy kNN 1176 1803 1 385 1176
FPFS-EC versus SVM -4.19 4.54 -4.62 4.4 4.19
) FPFS-EC versus ‘uzzg kNN 1421 1521 1481 14.90 14221
Coimbra FPES-EC versus FSSC 5.48 1.40 342 5.9 548
FPFS-EC versus FussCyier 6.89 1.52 438 7.99 6.89
EC versus HDFSSC 8.65 6.18 01 8.65
FPFS-EC versus BM-Fuzzy kNN 14.49 1478 14.27 14.57 14.49
FPFS-EC versus SVM 8.51 03 18.16 14.54 8.51
: ! FPFS-EC versus Fuzzy KNN 10.85 13.82 14.93 1473 1085
I FPRSEC Verais FasCyi 2038 300 iR bk 3034
- versus russCyler . . 5 . ..
FPFS-EC versus HDFSSC 16.67 1824 12:10 17.94 16.67
FPFS-EC versus BM-Fuzzy kNN 15.57 20.03 1944 20.12 15.57
FPFS-EC versus SVM 9.12 8.79 9.29 9.41 9.12
FPFS-EC versus Fuzzy KNN 491 5.07 4.89 5.00 491
Sonar FPFS-EC versus FSS 12.07 12.09 12.23 12.43 12.07
FPFS-EC versus FussCyier 15.57 14.63 14.55 15.57 15.57
FPFS-EC versus HDFSSC 17.03 17.42 16.63 17.04 17.03
FPFS-EC versus BM-Fuzzy kNN 434 458 4.04 434
FPFS-EC versus SVM 0.47 .65 1.14 0.81 0.71
. FPFS-EC versus Fuzzy KNN 12.26 34.18 24.99 24.16 23.12
Wine FPFS-EC versus FSSC 1.20 1.53 1.51 172 1.81
FPES EC Ve HBFSOC 50 % % b 3
FPFS-EC versus BM-Fuzzy KNN 4.98 2377 2387 2393 2247
FPFS-EC versus SVM 11.17 747 9.58 9.64 1117
) FPFS-EC versus Fuzzy kNN 7.97 9.52 1130 941 7.97
German Credit FPFS-EC versus FSSC 573 1.10 271 1.80 573
EPESEC Ve HBFSOC % 12 i1 i %
FPFS-EC versus BM-Fuzzy kNN 7.03 837 10.18 829 7.03
FPFS-EC versus SVM 11.99 15.70 16.06 16.10
FPFS-EC versus Fuzzy kNN 2017 4856 4227 3844
et FPESEC verain FasCyi i3 okt 1838 73
-EC versus FussCyier 3 E X 7
FPES-EC versus HDESSC 16.48 24.76 21.42 22.95
FPFS-EC versus BM-Fuzzy kNN 2440 37.13 38773 36.96
FPFS-EC versus SVM 0.83 -1.14 -1.24 -1.26 .
L Ry i o & i 2
- versus .. , X
FPFS-EC versus FussCyier 0.40 0.59 0.60 0.60 0.60
FPFS-EC versus HDFSSC 0.01 0.09 0.02 0.02 0.02
FPFS-EC versus BM-Fuzzy kNN 0.37 0.52 0.56 0.55 0.56
C versus SVM 0.00 0,00 0.00 0.00 0.00
. . C versus Fuzzy kNN 0.88 43.26 6.81 3.78 6.22
e frotein € Verai FasCyi 138 3% 30 i RO
versus FussCyier . : . : X
C versus HDFSSC 0.00 0.00 0.00 0.00 0.00
C versus BM-Fuzzy kNN 0.02 0.06 0.07 0.07 0.07
FPFS-EC versus SVM 19.24 17.50 41.83 6.40 1924
T FPFS-EC versus ‘uzze/ kNN 2480 3294 32775 332.86 24:80
Pukimson’s Dhesse FPESEC Verais FasCyi B30 ] % 2% 23
versus FussCyier X . 3. § 32.
FPFS-EC versus HDFSSC 32,01 45.58 4320 47.19 32.01
FPFS-EC versus BM-Fuzzy kNN 327 41.05 4045 4433 4327
VM 8.19 10.94 11.08 12.03 11.37
A Fuzzy KNN 0.60 1514 6.33 561
Teaching FSSC 13.41 16.54 18.48 19.56 19.20
FussCyier 13.36 16.45 18.42 2012 19.12
HDFSSC 7.1 9.57 10.10
M-Fuzzy kNN 15.64 23.67 2336 2271 2354
FPFS-EC versus SVM -3.06 -10.78 -10.01 -10.33 -10.13
A FPFS-EC versus Fuzzy KNN .73 2553 8.76 6.92 89
Vehicle FPFS-EC versus FSS 16.41 27.95 28.40 3148 28.81
FPFS-EC versus FussCyier 16.29 27.62 28.13 31.49 28.59
FPFS-EC versus HDFSSC 15.60 2571 26,87 28.66 2720
FPFS-EC versus BM-Fuzzy kNN 1.80 0.08 0.37 0.28 0.61
FPFS-EC versus SVM 0.04 1.25 0.05 0.03 0.04
) FPFS-EC versus Fuzzy KNN 0.99 423 1.50 2.67 0.99
Semeion FPFS-EC versus FSS 5348 38.69 20.69 51.93 5348
FPFS-EC versus FussCyier 21.36 32.18 5.19 27.97 21.36
FPFS-EC versus HDFSSC 8.00 22.66 1.28 14.39 8.00
FPFS-EC versus BM-Fuzzy kNN 0.47 .25 4.15 2.07 047
FPFS-EC versus SVM 2.66 298 3.01 3.11 2.66
FPFS-EC versus Fuzzy KNN 4.85 317 6.70 6.43 185
fonerphere FPES EC vermin FaCyi 28 a9 3600 370 348
- versus FussCyier . . . S E
FPFS-EC versus HDFSSC 2545 2771 36.06 9.70 2545
FPFS-EC versus BM-Fuzzy kNN 8.39 9.77 9.52 9.96 8.39
FPFS-EC versus SVM 3.30 17.18 18.14 18.25 18.14
FPFS-EC versus Fuzzy kNN 0.46 245 254 2.59 2.54
Vowel FPFS-EC versus FSS 10.26 53.57 56.44 57.89 56.44
FPFS-EC versus FussCyier 9.19 50.04 50.57 52111 5057
FPFS-EC versus HDFSSC 9.26 50.61 50.95 5235 50.95
FPFS-EC versus BM-Fuzzy kNN 1431 7950 7870 7598 78.70
FPFS-EC versus SVM 2.96 2.92 7.04 3.17 kX
FPFS-EC versus Fuzzy kNN 7.40 1772 12.72 10.86 10.86
e Mg S R ik 1o 15 i B
-EC versus FussCyier k . ¥ X 5.
FPES-EC versus HDESSC 10.30 14.85 13.57 1433 14.03
FPFS-EC versus BM-Fuzzy kNN 1011 16.04 1535 1547 1522

The results are presented in percentage.
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FIGURE 2. Accuracy (a), Precision (b), Recall (c), Macro F-score (d), Micro F-score (e), and running time (in second) (f) performances of the classifiers
related to Table 3.

Fuzzy kNN, FSSC, FussCyier, HDFSSC, and BM-Fuzzy
kNN when operated in the studied datasets except for 3-5,
12, and 15. Although SVM performs better than the others
in the datasets 3-5, 12, and 15, FPFS-EC generally produces
more reliable classification results than SVM, and the former

88594

operates faster than the latter. Moreover, Fuzzy kNN, FSSC,
FussCyier, and HDFSSC run faster than SVM and FPFS-EC.
However, their performance results are not stable, and they

exhibit a lower classification performance compared to SVM
and FPFS-EC.
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As clear from the mean results in Table 3, 4, and Figure 2,
FPFS-EC is a more efficacious method than SVM, Fuzzy
kNN, FSSC, FussCyier, HDFSSC, and BM-Fuzzy kKNN.

C. STATISTICAL EVALUATION

In this subsection, we employ the corrected Friedman
test [53] and the Nemenyi post-hoc test [54] in a manner
recommended by [57] to evaluate whether the overall dif-
ferences in the performance results obtained in view of five
performance metrics and running time are statistically signif-
icant. The Friedman test, a non-parametric test for multiple
hypotheses testing, produces a performance-based ranking of
the algorithms for each data set. Thereby, the rank of 1 refers
to the best performing algorithm, the rank of 2 to the second
best, etc. It assigns average ranks in the event that the ranks
of the algorithms are equal.

Afterward, the Friedman test first compares the average
ranks of the algorithms and secondly calculates the Friedman
statistic x %, distributed according to the yx % distribution with
k — 1 degrees of freedom. Here k is the number of algorithms.
If a statistically significant difference is detected in the per-
formance, a post-hoc test should be used to detect which
difference belong to which algorithm. The Nemenyi test is
one of the post-hoc tests commonly used to compare all the
classifiers with each other. In this test, if the average ranks
of the two algorithms occur more than the critical distance,
then the test shows that their performance is considerably
different.

We first calculate the average rank of each algorithm
considered in our experiments with k = 7 and N = 18
since the total number of the methods is 7 and the total
number of the datasets is 18. If the accuracy, precision, recall,
macro F-score, micro F-score, and running time values of
the Friedman test statistic are XI% = 55.61,)(]% = 56.15,
Xp = 45.00, x7 = 54.31, x7 = 55.25, and x7 = 98.79,
respectively, with 6 (k — 1) degrees of freedom and the
critical value for the Friedman test [53] given for k = 7
and N = 18 is 12.59 at a significance level of « = 0.05,
we can conclude that the accuracy (55.61 > 12.59), precision
(56.15 > 12.59), recall (45.00 > 12.59), macro F-measure
(54.31 > 12.59), micro F-measure (55.25 > 12.59), and
running time (98.79 > 12.59) values of the studied methods
are significantly different. Now that the null hypothesis is
rejected, we can proceed with a post-hoc test. The Nemenyi
test [54] can be used when all classifiers are compared with
each other [57].

The critical value in our experiments with k = 7 and
a = 0.05 is 2.1228. As a result, the accuracy, precision,
recall, macro F-score, and micro F-score of FPFS-EC are
significantly different from Fuzzy kNN, FSSC, FussCyier,
HDFSSC, and BM-Fuzzy kNN methods, but its running time
is not significantly different from that of Fuzzy kNN. Fig. 3
presents the critical diagrams generated by the Nemenyi
post-hoc test for the five evaluation measures and running
time.
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Critical Distance =2.1228
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HDFSSC (4.56) FussCyier (4.83)

Fuzzy kNN (4.67)

(a) Accuracy
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(d) Macro F-score
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(e) Micro F-score
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(f) Running time

FIGURE 3. The critical diagrams for the five evaluation measures and
running time: The results from the Nemenyi post-hoc test at

0.05 significance level and average rank scores from the

friedman test.

Fig. 3 shows that the differences between the average
ranks of FPFS-EC and those of the others except for SVM
are higher than the critical distance of 2.1228 in terms
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TABLE 5. Pairwise performance comparison of the classifiers via the
friedman test.

SVM

Fuzzy kNN
FSSC
FussCyier
HDFSSC
BM-Fuzzy kNN
FPFS-EC

SVM -
Fuzzy kKNN + - - - - R
FSSC +

FussCyier - - - - - -
HDFSSC - - - - - -
BM-Fuzzy kNN + - - - - -
FPFS-EC - + + + + + -

- represents compared classifiers” performances are not significantly different, whereas
+ stands for they are.

+
+
'
.
+
.

+ o+ o+ o+ o+

of all the performance metrics, in contrast to the running
time ranks. Besides, Table 5 offers the pairwise comparison
between the classifiers obtained via the critical distances
in the Friedman test. Fig. 3 and Table 5 manifest that
FPFS-EC remarkably outperforms the others in terms of five
performance measures.

VII. EVALUATION OF COMPUTATIONAL COMPLEXITY
This section compares the classifiers’ computational com-
plexity by utilizing big O notation besides their running
time results obtained in 30 runs for the 18 UCI datasets.
As can be observed in Table 3, FPFS-EC in general seems
to operate faster than SVM and BM-Fuzzy kNN and slightly
slower than Fuzzy kNN, FSSC, FussCyier, and HDFSSC.
The underlying cause of its slightly slower running than the
others is that, in the pre-processing step, FPFS-EC employs
all of the training samples while FSSC, FussCyier, and
HDFSSC utilize a class-based mean of the training sam-
ples. Additionally, FPFS-EC’s running time occurs under
1 s for 17 of the 18 datasets (except for ‘“Semeion’).
Thanks to its low running time, the proposed classifier can
be employed in real-time applications. From the pseudocode
of FPFS-EC, the computational complexity is O(mn) for
each test sample. Here, m and n are the numbers of the
training samples and attributes, respectively. The computa-
tional complexities of the compared classifiers are provided
in Table 6.

VIIl. DISCUSSION

In this section, we discuss FPFS-EC and its classification
performance. The subsections Simulation Results and Sta-
tistical Evaluation corroborate that FPFS-EC has a classi-
fication advantage in the considered datasets over SVM,
Fuzzy kNN, FSSC, FussCyier, HDFSSC, and BM-Fuzzy
kNN. FPFS-EC’s success majorly results from the use
of a pseudo-similarity of fpfs-matrices — i.e., Euclidean
pseudo-similarity — based on parameters’ impact. Euclidean
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TABLE 6. Computational complexities of the classifiers.

Classifier Computational Complexity
SVM with kernel O(m?)

Fuzzy kNN O(n?logk)

FSSC O(ml)

FussCyier O(ml)

HDFSSC O(ml)

BM-Fuzzy kNN O(In3log k)

FPFS-EC O(mn)

k is number of nearest neighbor, m is the sample number of the training data, n is the
parameter number of the training data , and [ is the class number of the data.

pseudo-similarity produces a similarity coefficient utilizing
the Pearson correlation between parameters and class labels.
This process provides that more significant parameters affect
the classification phase more profoundly, whereas less sig-
nificant parameters exert less effect. The second is that
FPFS-EC processes training samples separately. On the other
hand, FSSC, FussCyier, and HDFSSC classify the considered
test sample employing the averages of the training samples,
which causes data loss.

IX. CONCLUSION

This paper defined eight pseudo-metrics of fpfs-matrices
and eight pseudo-similarities of fpfs-matrices based on these
pseudo-metrics. Contrary to most of the studies in the lit-
erature working on a fictitious problem, we applied the
similarity measures of fpfs-matrices to actual numerical
data classification. In other words, we developed FPFS-EC
based on the pseudo-similarity of fpfs-matrices for numerical
data classification and compared FPFS-EC with SVM [49],
FSSC [44], FussCyier [45], HDFSSC [46], Fuzzy kNN [47],
and BM-Fuzzy kNN [48]. The results show that FPFS-EC
outperforms the other methods and fpfs-matrices are more
efficacious than fuzzy soft sets for the 18 data sets used
herein. This study is believed to inspire new research on
constructing fpfs-matrices for real-life problems, such as data
classification..

However, since fpfs-matrices can effectively model clas-
sification problems containing uncertainty, further research
should be conducted to focus on them. We foresee that
one way of improving FPFS-EC is to use different simi-
larity measures of fpfs-matrices or define similarity mea-
sures of intuitionistic fuzzy parameterized intuitionistic fuzzy
soft matrices [58]. Another is to employ different soft
decision-making methods constructed by fpfs-matrices, such
as in [9]-[11], [15]-[21], and [59]. The other is to decrease
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the negative effects of the unstable data in the datasets herein
on classification success.

Finally, it should be stated that when the success of a
method is below 90%, the margin of error is unaccept-
able, particularly in medical decision-making. To overcome
this problem and perform a highly reliable diagnosis, con-
sidered methods should be customized according to the
subject.
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APPENDIX
Proof [Proposition 12]: For all [a;],[b;],[c;] € FPFSE[U],

i dillagl log]) = 'Y lagjay —
Z Zj 10 0
iL. dl([al]] [bl]]) = Z

i ZJ 1 Ibojbij —
iii. dy(lagl, [by]) = )i,

aoja,‘j| =

ZJ | lagjai; — bojbyl =
a0]a1j| = d([sz]a [alj])

ZJ | laojaij — bojbjjl
= > Y lagjay — cojcy

+ cojcij — bojbijl

<> ! > i1 lagjai — cojeyjl

+ Y Y leojei — bojbi
= di([aj], [ci]) + di([cii], [bi])

Proof [Proposition 13]:  For all [a;].[b;l.[c;] €

FPFSg[U],
i. dy([ail, la;]) = max {maX{landz‘j—ao]‘azjl}} =
iel,—1 | jelu
max {max {O}} =
iely,—1 | jeln
ii. dy(lag], [by]) = max {maxﬂanaij_bOjbij”} =
iely—1 | jeln
[max {522}3‘ {1bojbij — anaij|}} = dy([b], [a;j])
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iii. dy([a;], [b;]) = max

. max {|agjaij — bof'bz:/'l}}
iel,—1 | jely

= max (max{|agja; — cojcij
iel,—1 | jely
+ cojcij — b()jbijl}}

< max (max{lagja; — cojcij
iely,—1 | jeln

+ leojcij — bOjbz‘jI}}

< max jmax {lagjaij — cojcijl}
i€ly—1 ] In
+ max {|cgjcij — bojb,]|}}
Jjel,
< max (max {|agja; — cojc,-jl}}
iely,—1 | jel

4+ max max{|cojc,J — bojbl]|}}
i€hy—1 | jel,

= do([ayjl, [CU]) + da([el, [BiD)

Proof [Proposition 14]:
FPFSE[U],

For all [ajl.[bjllcij]l €

i dy(lag), la (Z 'Y lagay — agagl?)” =
(= 5 10)7 =0

ii. d3([aj], [by]) = (Z,’E 2= Iaoj'azj—boj'biﬂz)% =
(S S by — anayl?) = ooyl )

1

i ds(lay], [by]) = (Z;’;‘]l >y lagjai — bQ,bl;,|2) ’
= (275" S laojay — corey
+ cojciji — bojb,'j|2)

< (Z?Zl > (lagjay — cojej]

D=

1
+ |cojcij — bOjbij|)2) :
1
(Z 'Y lagai; - COJCijlz) i
1
+ (Z?Sl Y1 leoje — bOjbij|2) ’
= d3([ajj], [ci]) + d3([cyl, [by])

Proof [Proposition 15]:
FPFSE[U],

For all [a;].[bjl.[c;i] €

i dy(lagl. lag)) = Y7 (Zfll |610/6h:/—aof'amz)2 =
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1

1 1
ii. dy(lag), by) = 21! (Z}Z:l |aojaij —boj'biﬂz)2 = ii. dg([ay), [bg)) = Y1 (27:1 |aojai; — bojbyl? ),, =
1 1
S (S Iboby — agagP) " = dalby), lag)) St (S bojby — agjag? )" = d2(1by), Lag)
1 1
1 2
iii. da(lag), [by]) = Y1 (Z}Ll |aojai; — bo/'bzrilz) iii. d(lag), b)) = (205" Y0, lagjaij — bojb,jv’)
= (Z}Ll lagjaij — cojcij = (Xt Iao,a,, cojcij

1 1
+ cojeij — bojbiil?)? + co]cl] bojbij|p)P
-1 L — OO
= 305 (2 (lagay — cojey (Tt o (|“°f“”l corci
1 D\
2\ 2 + leojeij — bojbil)")?
+legjc — bobi)?)

m—1 n 2\2 = (Z ZJ 1 |anazj N CO]Czjlp)
<> (Zj:l |aojaij — cojcijl )

IA

= -

1
1 + (05" S leoeg — bobyl”)
2
+ (Zf:l |cojcij — bOjbij|2) } = df ([a;], [ci]) + di ([cij], [by])
1
=Z{":—1 S lagiaii — cojciil* 2 Proof [Proposition 18]:  For all [a;].[bjl.lci] €
= ( =R T ) . FPFSg[U] and p € N¥,
+ ! (Z}'_l |cojeij — b()jbij|2)2 1
- . _1
= di((ay]. [cy]) + da(ley]. [by]) i dg([aij]s [a;]) = anzl (27=1 |6lQ/aij—aoja,:/~|P>P =
u m—1 n % _
Proof [Proposition 16]:  For all [ayl[bjllcj] € i (ijlo) =0 1
FPFSE[U]’ el il. dél([az]]a [blj]) = Z:n:_ll (er'l:l |aojaij — bOjbij|p>p =
i ds(lag), la) = Y75 rjrgllx{mOjaij_anaij'} = 1

oy e y=0 iy (Z};l bojbij — aojai;|? ),, = d}([b], [ailj])
it ds(lag (by) = X5 maxlagay —bobyl) =i dflag). 1by) = 75" (X lagay — bobyl?)”
X by — ayayl) = syl fa) = 5 (S ey — e
+ cojcij — bojbij|p)%
= 2" (S (laojay — ey

+ leojcij — bojbil)")

—1
iii. ds([ay), [by]) = >0 max{|agjaij — bojbyl}
JE€In
—1
= Yy max{|agja; — cojcij
J€ly

+ cojcij — bojbijl}

=

<y rjnax {laojaij — cojcijl

1
m—1 n P
+ |cojei — bojbiil} <> [(ZJ-:l laojaij — CQ/C:j/|p>
1
n P
<>m [max {lagjaij — cojcijl} + (ijl |cojcij — bOjbij|p) ]
1
-1 ,
+ max{legje; — boj‘bijl}} =25 (Z}’zl laojaij — cojeil” )

= Z:”:_ll max({|agja; — cojcijl}
Jjel,
+ Z;";ll r}g}xﬂcojcij — bojbijl}
= ds([a;], [ci]) + ds([cij], [by])

1
+ X (Z}Ll lcojeij — bojbyl” ) !
= df([ayl, [ci]) + d ([ey), [by])
Proof [Proposition 19]:  For all [a;].[bjl.lci] €

Proof [Proposition 17]:  For all [al[bjllc;] e — FPFSELU] and p € N¥,
FPFSg[U]andp € N*,

1
i df(lag). Lagh) = S (S laoas — anagl’)” =
1 P
—1 » m—1 —
Ci (Sm0)" =0 (! mxon) =0

4

. 1 I
i. df([ajl, lay]) = <Z,r'n:1 Ijrg}x{'aojaij_analﬂp }> =
n
1
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1

B »
ii. df(layl, [bj]) = <Z:~"_11 TJIg}X{IGOjaij — bojbjj|P }>
" 1

5
= <Z:~"=_11 T;E-XHbOjbij — agja;l? }) = d§([bj], la;])

1
P

iii. df([a], [by]) = <Z:'n:_11 I}E}X“anaij - bOjbij|p}>

—1
= | 21, max{lagja;; — cojcij
jely
1

b
+ cojeij — bojbi|? }>
-
< (Z?ll max{(lagja; — cojc
jel,
PN\
+ |cgjcij — bOjbij|> })
-1
= (ZZ-":] max({|agja;; — cojcijl
Jjely

»
+ |cojcij — bojbi| )P )

-1
< (Zi-":l <max{|aoj'aij — cojcijl}
J€
P\ »
+ max({|cojcij — bojbij|}> )
J€ln
=<

-1
255 max{lagjai — cojeijl}P
€l
1

p
+ max{|cojc;j — bojbij|}P )
JEly

1
-1 P
< (Z:n_l l}g}x{laof'aij — cojcijl}f )
n

+ (Z;":_ll I}gIIX“COjCij — bojb|}? ) ’
= d ([a;j]. [c]) + d5 ([cii], [bi])

Proof [Proposition 23]: Let [aj], [b;j] € FPFSg[U].

i. Since [a;]1C[b;1<]cy], for alli € I and j € I, a;j
by < c;j. Therefore, for all i € I,, and j € I, agja;;
bojbij < cojcij holds. Then,

bojbij — apjajj = CjCjj — ap;jaij and
cojcij — bojbyj = cojeij — aojay;
Thus,
|b0jbij — aojaijl < |C0jcij — a()jaij| and
|lcojeij — bojbijl < Icojcij — aojaij]
Thereafter,
m—1 n m—1

O

IAIA

n
Z Z lagjaij—bojbij| < Z Z |agja;j—cojcijl  and

i=1 j=1 i=1 j=1
m—1 n m—1 n
Z Z |bojbij — cojcijl < Z Z lagjaij — cojcijl
i=1 j=1 i=1 j=1
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Consequently,
di([aij], [bi]) < di([ay], [c]) and
di([bjl, [eiD) < dilag], [ei]D
Others can be proved by similar way. O
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