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ABSTRACT
Arbitrariness attributed to the zero-point constant of the V-band bolometric corrections (BCV) and its relation to ‘bolometric
magnitude of a star ought to be brighter than its visual magnitude’ and ‘bolometric corrections must always be negative’ was
investigated. The falsehood of the second assertion became noticeable to us after IAU 2015 General Assembly Resolution B2,
where the zero-point constant of bolometric magnitude scale was decided to have a definite value CBol(W) = 71.197 425 ... .
Since the zero-point constant of the BCV scale could be written as C2 = CBol − CV, where CV is the zero-point constant of
the visual magnitudes in the basic definition BCV = MBol − MV = mbol − mV, and CBol > CV, the zero-point constant (C2)
of the BCV scale cannot be arbitrary anymore; rather, it must be a definite positive number obtained from the two definite
positive numbers. The two conditions C2 > 0 and 0 < BCV < C2 are also sufficient for LV < L, a similar case to negative BCV

numbers, which means that ‘bolometric corrections are not always negative’. In sum it becomes apparent that the first assertion
is misleading causing one to understand bolometric corrections must always be negative, which is not necessarily true.

Key words: Sun: fundamental parameters – Sun: general – stars: fundamental parameters – stars: general.

1 IN T RO D U C T I O N

One of the most very basic definitions in stellar astrophysics is
bolometric correction (BC) known as the difference between the
bolometric and visual magnitudes of a star (BCV = MBol − MV =
mBol − mV). Preference of the V filter is simply a convention since
most (including the oldest) photometric data is in the visual.

After giving its basic definition as BCV = mBol − V and stating
‘... this definition is usually interpreted to imply that the bolometric
corrections must always be negative, although many of the currently
used tables of empirical BCV values violate this condition’, Torres
(2010) paid attention to another definition of BCV,

BCV = 2.5 log

(∫ ∞
0 Sλ(V )fλdλ∫ ∞

0 fλdλ

)
+ C2, (1)

where Sλ(V) is the sensitivity function of the V magnitude system, fλ
is the monochromatic flux from a star, and C2 is an assumed arbitrary
constant of integration. Consequently, another problem was pointed
out: ‘The constant C2 contains an arbitrary zero-point that has been
a common source of confusion’. This is because ‘when making use
of tabulations of empirical bolometric corrections for stars (BCV), a
commonly overlooked fact is that while the zero-point is arbitrary, the
bolometric magnitude of the Sun (MBol, �) that is used in combination
with such tables cannot be chosen arbitrarily. It must be consistent
with the zero-point of BCV so that the apparent brightness of the Sun
is reproduced’ as reported by Torres (2010).

� E-mail: eker@akdeniz.edu.tr

Confirming Torres (2010) and Casagrande & VandenBerg (2018)
stated that despite the solar luminosity being a measured quantity,
MBol, � is an arbitrary zero-point and any value is equally legitimate
on the following equation

MBol − MBol,� = −2.5 log(L/L�), (2)

on the condition that once chosen, all bolometric corrections are
scaled accordingly. Therefore, equation (2) indicates the existence
of an infinite number of MBol and MBol, � pairs having the same
magnitude difference (MBol − MBol, �) to compute the single stellar
luminosity (L/L�) in solar units. Consequently, an infinite number
of BCV is inevitable for a single star because there is no similar
mechanism to change its MV parallel to its MBol in order to keep BCV

constant in the basic definition (BCV = MBol − MV). Therefore,
according to Casagrande & VandenBerg (2018), an infinite number
of zero points for the bolometric magnitudes and for BC scales must
exist and all must be valid.

Arbitrariness attributed to the zero-point of the BCV scale was
claimed long before by Hayes (1978) because all the BCV values
tabulated by Hayes (1978) are less than zero and his statement ‘I
have taken the zero of B.C. to be at its minimum absolute value, with
the result that B.C.� = −0m.14’ clearly indicates arbitrariness of
the BC scale, where the smallest of the corrections, BCV = −0.01,
are associated with main sequence stars of the A7-F7 spectral types.
Similarly, a tabulated empirical BCV table by Habets & Heintze
(1981) does not contain any positive value where BCV for the sun
is −0.34 mag. The smallest correction, BCV = −0.07, is associated
with F2 spectral type. BCV by Kuiper (1938), who preferred to
take the zero-point at 6600 K, are the same; all are less than zero.
McDonald & Underhill (1952) adjusted their corrections to a scale
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giving BCV = −0.11 mag for the Sun with T� = 5713 K. Wildey
(1963) evaluated all BCV determinations and presented them in a
2D diagram (B − V)0 − BCV, where all BC values appear less
than zero. Another author, who gave BCV values less than zero, is
Popper (1959). The BCV values of pre-main-sequence stars are all
given in the negative by Pecaut & Mamajek (2013). The handbook
of astronomers, Allen’s Astrophysical Quantities, contains BCV

numbers for main-sequence, giants, and supergiants which are all
negative, where the smallest of the corrections, BCV = −0.00 mag,
is associated with F2 supergiants, and Teff = 7030 K (Cox 2000).
Considering his note on page 381, where the definition of BC is
given by Cox (2000), the negative sign appears to be intentional to
emphasize that all BCV must be negative.

However, the picture is totally different among the other half of
researchers, who use the same basic definition, and the alternative
definition used by Torres (2010).

According to Heintze (1973), fλ for the Sun is a measurable
quantity over a sufficiently large wavelength region, thus BCV,�
is known from the basic definition, MBol,� and the zero-point was
adopted for the bolometric magnitude scale. So, C2 is known (Heintze
1973). Confirming this, Code et al. (1976) say that ‘C2 is uniquely
defined if we adopt a value for the bolometric correction for a
specified spectral distribution of fλ’. Using not only the Sun’s spectral
distribution, but also the spectral distribution of 21 non-reddened
single stars with well-established

∫ ∞
0 Sλ(V )fλdλ, Code et al. (1976)

determined the value of C2 = 0.958. Heintze (1973) did not give
any table, but Code et al. (1976) gave the tabulated BCV as being
less than zero (BCV < 0) for main-sequence stars in the effective
temperature range 5780–34 000 K, except for a limited portion in the
7000–8000 K range with BCV = 0.01.

The table of Code et al. (1976) is not the only example to include
a limited number of positive BCV values. The tables presented by
Johnson (1964, 1966), Flower (1977, 1996), Bessell, Castelli & Plez
(1998), Sung et al. (2013) and recently Casagrande & VandenBerg
(2018) and Eker et al. (2020) all contain a limited number of positive
BCV values.

Clearly, there are two schools of thought who treat arbitrariness of
the BCV scale differently. One school intentionally shifts computed
BCV values to make them all negative while the other school prefers
retaining them as they are, even if there are positive BCV values. The
first group appears self-consistent according to the principle that a
positive BCV would violate the fact that the bolometric magnitude
of a star ought to be brighter than its V magnitude; therefore, this
group’s members feel free to shift the zero-point of the BCV scale
to make sure that all BCV are negative. However, the second group,
which retains the BCV as they are, even if there are positive values,
either ignores the note ‘BC = mBol − V (always negative)’ (page 381
in Cox 2000) or a positive BCV is not seen as a violation. If the zero-
point of the BC scale is indeed arbitrary, why not take advantage and
use it to make all BC values negative in order to avoid a conceptual
problem?

Here we should stress the difference between absolute and limited
discrete arbitrariness. Absolute arbitrariness is the arbitrariness
expressed by Torres (2010) on equation (1) where C2 could be
any number from minus infinity to plus infinity, which would all
be legitimate, and satisfy the solution. However, for the limited
discrete arbitrariness, a researcher does not have the freedom to
choose any value except a limited number of choices. The former is
problematic while, the latter option, is acceptable. One step after
limited discrete arbitrariness is the nominal choice (or standard
choice). That is, standardization; if all users have a single option.
Although the arbitrariness by Casagrande & VandenBerg (2018)

gives the impression of absolute arbitrariness, after reading why
they choose MBol,� = 4.75 mag, it becomes clear why this is not an
absolute but a limited discrete arbitrariness.

Motivated to try to solve the dilemma between these two schools of
thought, in this study we investigated the problem of arbitrariness on
the BCV scale and its relationship to the statements ‘the bolometric
magnitude of a star ought to be brighter than its visual magnitude’
and ‘bolometric corrections must always be negative’.

2 G RO U N DWO R K

2.1 Non-uniqueness (arbitrariness) analysis

One of the most distinguished philosophers of science in the 20th
century, Sir Karl Popper (1972), says that if a theory explains
everything, it has no scientific value. Similarly, if a scientific problem
has an infinite number of solutions (absolute arbitrariness), such
as solutions of an indefinite integral with an arbitrary constant,
it would be equivalent to no solutions at all. Therefore, before
discussing the problems associated with a positive BC, it is necessary
to analyse the non-uniqueness (arbitrariness) attributed to the BC
scale. Unfortunately, the word ‘unique’ does not have a unique
meaning. Thus, one must first be aware of already identified types
of non-uniqueness (arbitrariness) too. Similar analysis had been
done for the synthetic light curves of spotted stars (Eker 1999)
and main-sequence mass–luminosity (MLR), mass–radius (MRR),
and mass-effective temperature (MTR) curves (Eker et al. 2018),
where three types of non-uniqueness (Type 1, Type 2, Type 3) were
investigated.

Type I applies to a scientist who has already collected data
(measurements, observations) and is at the point of trying to find
a best-fitting curve (function), which could be picked from a list of
many mathematical functions. For most cases, however, mathemati-
cal functions are known; e.g. a Planck function is for explaining the
spectral energy distribution (SED) of a star. A problem with Type
1 exists if scientists do not have any notion about which function
to apply and there could be more than one, perhaps many different
mathematical functions that equally explains the data.

If a Type 1 problem does not exist, the next problem is called
Type 2, which concerns whether a unique fit is possible or not.
Nevertheless, there are methods for how to deal with Type 2
problems; e.g. the least-squares method guarantees a unique fit for a
given function; free parameters and coefficients can be determined
even with their associated errors. In the case of SED, the free
parameter is effective temperature of the star, which is a unique
(non-arbitrary) value.

Lastly, the problem of Type 3, involving parameter space, needs to
be investigated if there are no problems of Type 1 and Type 2. This
is because there could be more than one set of parameters (discrete
arbitrariness), even an infinite number of sets (unscientific case), that
may produce the same curve. A good example of limited arbitrariness
would be the light curve of a single circular spot on a rotating
spherical star. Here, there is a trade-off between the inclination of the
rotation axis and the spot latitude; that is, a circular spot at latitudes
10 degrees (spot position with respect to the equator) on a spherical
rotating star with 45 deg of inclination produces exactly the same
light curve as another spherical star with 80 deg of inclination having
the same size circular spot at 45 deg latitudes (Eker 1996). A spot
modeller cannot differentiate between these two models from the
light curves unless the inclination of the rotation axis is pre-assumed
or known. On the other hand, since each of the MLR, MRR, and
MTR functions (Eker et al. 2018) has one-to-one correspondence
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(one luminosity, one radius, one effective temperature for a main-
sequence star of a given mass), there is no Type 3 problem for the
interrelated MLR, MRR, and MTR functions.

When discussing these types of arbitrariness, Eker (1999) and
Eker et al. (2018) assumed that the scientific data (observed light
curves, stellar masses, and parameters, respectively) did not involve
any kinds of zero-point complexities. The arbitrariness attributed
to the zero-point constant of the BC scale, if BC numbers are
treated as measurements (data), is another kind of non-uniqueness,
which is a totally new case in addition to the non-uniqueness
(arbitrariness) problems discussed above. Since this new problem
is directly connected with the measurements (data), it should be
called Type 0 and should be tested or investigated before the other
types. One may imagine the mass of stars being expressed by
unknown units in such a way that it is impossible to convert them
into a known unit, because the scales used by different observers
have different zero points. The result is that the data would be
unusable.

Science has overcome these problematic issues so that today’s
scientist enters a world where all units and unit systems (SI, cgs, etc)
in science are ready and rules how to convert from one system to
another already exist. In one way or another, the determination of a
standard zero-point constant of the BC measurements was completed
only very recently. Another peculiarity is that the definition of BC
in equation (1) involves definite integrals. The definite integrals,
however, never take an arbitrary constant. Why such an arbitrary
constant C2 required in equation (1) is one of our basic questions,
but let us leave this issue aside for the moment and start investigating
whether there is a way out of the absolute arbitrariness implied by
the arbitrary zero-point constant C2. It is clear to us since there is
neither a boundary condition to apply nor could it be invented to set
up its own value, that the only way out of the absolute arbitrariness
is a consensus, as was done historically for the fundamental units
of length, mass and time. Here, it would be useful to review earlier
attempts to avoid absolute arbitrariness before arriving at a final
solution.

2.1.1 Early attempts to avoid absolute arbitrariness

There are two possible ways of breaking off the absolute arbitrariness
of the BC scale using a star, the Sun, despite the difficulty of
measuring its apparent visual magnitude, which is about 26 mag
brighter than the brightest star in the sky, and unlike stars the Sun is
not a point source.

(1) Assume a bolometric correction (BCV,�) for the Sun, and then
calculate the solar bolometric magnitudes from the observationally
determined solar visual magnitudes V� and MV,� using BCV = MBol

− MV = mBol − V.
(2) Assume an absolute bolometric magnitude (MBol, �) for the

Sun, and then calculate its bolometric correction (BCV,�) from its
absolute visual magnitude (MV,�).

After choosing one of the two methods above, equation (2)
could be used for calculating the MBol of a star if its L is known.
Consequently, the star’s BCV could be calculated from its visual
magnitudes if its distance and interstellar extinction are available.
After collecting a sufficient number of BCV from all types of stars, a
BCV − Teff relation could be established; this is a useful relation for
estimating the BCV of single stars which could be used for calculating
the L of other stars from their observed V magnitudes if their distances
and extinctions are known. Most BCV − Teff relations are in tabular
format; only Flower (1996) and Eker et al. (2020) gave it as a function
of log Teff in a polynomial format.

Although the word ‘assume’ in the beginning of both methods
implies absolute arbitrariness, as soon as a decision is made (BCV,�
value in the case 1, or MBol,� value for the case 2), the problem reduces
to limited discrete arbitrariness for users who access tabulated tables
of BCV from several producers. For a producer, however, as long
as the assumed value is treated as a unique quantity, all the other
parameters (BCV and MBol) of other stars could be defined uniquely,
fulfilling the fact that stars must have unique BCV and MBol.

Historically, both methods are equally popular. Flower (1996)
and Cox (2000) could be considered among the latest who assumed
BCV,� = −0.08 mag first, then calculated MBol,� = 4.74 mag from
MV,� = 4.82 mag, itself calculated from V� = −26.75 mag, which
is the primary observational quantity. Bessell et al. (1998) gives
a table (table A4) where various authors (Allen 1976; Durrant
1981; Schmidt-Kaler 1982) who assumed MBol,� first, then BCV,�
calculated from MV,� which is itself obtained from V� together
with corresponding solar fluxes and luminosities. Torres (2010) and
Casagrande & VandenBerg (2018) are the most recent examples
where stellar BCV was obtained by adopting MBol,� = 4.75 mag,
while Eker et al. (2020) preferred to adopt MBol,� = 4.74 mag since
it is a nominal value suggested by IAU 2015 General Assembly.

Both methods are quite well acceptable and eligible to produce
a consistent unique BC − Teff curve. In addition to the discrete
arbitrariness (users have several choices), what is more problematic
is that users must be alerted when choosing BC corrections from
literature. They must first search what values of MBol, � and L� were
adopted at the very beginning because the same adopted values are
needed when calculating the L of other stars via equation (2). Even
a slight change on any one or both of those adopted values will
be reflected in as systematic errors on the computed L. The risk of
error has already been point out by Torres (2010) ‘When making use
of tabulations of empirical bolometric corrections for stars (BCV), a
commonly overlooked fact is that while the zero-point is arbitrary, the
bolometric magnitude of the Sun (MBol,�) that is used in combination
with such tables cannot be chosen arbitrarily’.

In order to avoid such problems and also remove discrete arbitrari-
ness, consensus on a method and its assumed parameter is needed.
Such a consensus has recently been achieved by IAU 2015 General
Assembly Resolution B2.

2.1.2 IAU 2015 GAR B2

It is not possible to say that the IAU has not issued a formal resolution
on the matter of BCV zero points because two of its commissions
did agree only on a zero-point of the bolometric magnitude scale by
adopting a value for MBol,� = 4.75 mag at the Kyoto meeting of 1997
(Andersen 1999, pp. 141 and 181). On one occasion, the bolometric
magnitude scale was set by defining a star with MBol = 0.00 mag for
an absolute radiative luminosity L = 3.055 × 1028 W (see also Cayrel
2002). However, as Casagrande & VandenBerg (2018) commented,
since L� is a measured quantity while MBol,� is an arbitrary zero-
point, any value of MBol,� is legitimate on the condition that once
chosen, all bolometric corrections are scaled accordingly. That is,
no extra consensus is needed to pin down the value of the zero-
point constant of the BCV scale. Indeed, fixing the zero-point of the
bolometric magnitude scale has the consequence of fixing the zero
points of the all BC scales of all other bands, not only BCV.

Arbitrariness of various BC scales, apparently, was an issue
discussed first by IAU commissions. Nevertheless, the decisions on
the subject were finalized by IAU 2015 General Assembly Resolution
B2 (after IAU 2015 GAR B2). The zero-point constant of bolometric
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magnitudes was set according to

MBol = −2.5 log(L) + CBol (3)

with the clear statement ‘a radiation source with absolute bolometric
magnitude MBol = 0 has a radiative luminosity of exactly L0 =
3.0128 × 1028 W and the absolute bolometric magnitude MBol for a
source of luminosity L (in W) is

MBol = −2.5 log(L/L0)

= −2.5 log L + 71.197 425 ... . (4)

The zero-point was selected so that the nominal solar luminosity
corresponds closely to absolute bolometric magnitude MBol,� =
4.74 mag, the value most commonly adopted in the recent literature
(e.g. Bessell et al. 1998; Cox 2000; Torres 2010)’1 together with a
reminder: the notations of MBol and mBol were adopted by Commis-
sion 3 (Notations) at the 6th IAU General Assembly in Stockholm
in 1938.2 It is clearly declared that MBol and mBol refer specifically
to absolute and apparent bolometric magnitudes, respectively. Thus,
the zero-point constant of the bolometric magnitude scale is CBol =
71.197 425 ... if L is in SI units, and CBol = 88.697 425 ... if L is in
cgs units.

Equation (3) is more fundamental than equation (2) because if
equation (3) is written for the Sun:

MBol,� = −2.5 log L� + CBol. (5)

Subtracting this equation side by side from equation (3), the equation
(2) is obtained. Contrary to equation (2), which is the source of
arguments favouring arbitrariness, the more fundamental relation
equation (3) leaves no space for any kind of arbitrariness if the value
of CBol is known. In equation (2), the term CBol cancels out during the
subtraction. From equation (5) it can be understood why the Sun was
chosen for setting the zero-point constant (CBol) of the bolometric
magnitudes. This is because the most accurate stellar luminosity ever
determined is solar luminosity.

The best estimate of solar luminosity is L� = 4π (1 au)2S� =
3.8275(± 0.0014) × 1026 W, which is a value computed from the
recently estimated best value of the solar constant S� = 1361(±
1) Wm−2, obtained from the total solar irradiance (TSI) data of 35 yr
of space-born observations during the last three solar cycles (Kopp
2014). The adopted values of CBol and L� indicate the nominal value
of MBol,� = 4.739 996 ... mag, which is indeed very close to MBol,�
= 4.74 mag as specifically pointed out by IAU 20015 GAR B2.

2.1.3 Other types of arbitrariness?

The discrete arbitrariness of the zero-point of the BCV scale is
removed after assigning a definite value to the zero-point constant
for bolometric magnitudes. If MBol and L have one-to-one corre-
spondence, both could be considered as unique properties of a star.
Since visual absolute magnitude MV is also a unique property of
this star, the basic definition, BCV = MBol − MV is there to produce
unique BCV. This fact, however, became noticeable to us after IAU
2015 GAR B2; that is, the arbitrariness of type 0 attributed to the
zero-point of the BCV scale had been removed.

The tabulated tables of BCV actually define a relationship between
BCV coefficients and other stellar parameters, even though there is
no definite form for a function. The primary parameter influencing

1https://www.iau.org/static/resolutions/IAU2015 English.pdf
2https://www.iau.org/static/resolutions/IAU1938 French.pdf

BCV is effective temperature. Flower (1996) and Eker et al. (2020)
give the BCV − Teff relation as polynomials, using the logarithm of
Teff as a single variable. Therefore, it can be said that there is no
arbitrariness of Type 1 associated with BCV values as well as BCV −
Teff curves. Moreover, there should not be an arbitrariness problem
with Type 2 either because the least-squares method guarantees a
unique fitting curve (BCV − Teff function) with arbitrary coefficients
determined, including internal random errors. The parameter space
of the BCV − Teff function is also unique; hence there is no space
for a Type 3 problem because for a given Teff there is only one value
of BCV. Thus, the arbitrariness problems of Type 0, Type 1, Type 2,
and Type 3 do not exist for BCV and BCV − Teff relations in reality.

2.2 Apparent magnitudes and zero point constants

A comprehensive description of the magnitude system is given
concisely by Cox (2000) and various textbooks. There are various
filters to isolate certain spectral features or wavelength ranges.
The fluxes received through these filters are transformed to mag-
nitude values. For monochromatic radiation, a flux density per
unit wavelength of 3.631 × 10−9 erg s−1 cm−2 Å−1 defined as m =
0.0 (Casagrande & VandenBerg 2014), equivalent to −21.10 mag,
which is known as the zero-point constant of ST magnitudes. If
the monochromatic magnitudes use fluxes of per unit frequency,
the system is called the AB system. For AB magnitudes, a flux of
3.631 × 10−20 erg s−1 cm−2 Hz−1 is set up for m = 0.0 magnitude,
where the zero-point constant becomes −48.60 mag (Casagrande &
VandenBerg 2014). Bessell et al. (1998) provide them to three digits
accuracy: Cλ = −21.100, and Cν = −48.598. The fluxes which make
m = 0.0 were chosen so that, for convenience, α Lyr (Vega) has very
similar magnitudes in all systems: ST, AB, and VEGA (Casagrande
& VandenBerg 2014).

In reality, the magnitudes of various photometric systems are
heterochromatic. Using α Lyr (Vega) as the primary calibrating
star, the VEGA system is the most well-known and deliberated
for heterochromatic measurements. Among these systems, the most
famous is the Johnson–Cousins system. Although the zero points
are often determined observationally from a network of standard
stars, it is formally just a single object. A hypothetical star of the
spectral type A0V with magnitude V = 0.0 mag on the Johnson
system is given in table 16.6 (Cox 2000), where UBVRI bands and
monochromatic fluxes at effective wavelengths are presented. Note
that Vega is used as a calibrating star but its apparent magnitude is
not exactly zero. V = 0.03 mag has been measured by Johnson et al.
(1966) and Bessell et al. (1998). The standard Johnson value of V =
0.03 mag is cited by Bohlin (2014). The same value (V = 0.03 mag)
was adopted by Cox (2000), Girardi et al. (2012), Bessell & Murphy
(2012), and Casagrande & VandenBerg (2014). For the other bands,
Vega is found to be just slightly positive (∼0.02 mag) at most bands
(Rieke et al. 2008).

For the heterochromatic bands of various photometric systems,
the zero-point constant Cξ needs to be derived for each bandpass
ξ using a star of known absolute flux, usually Vega (Casagrande &
VandenBerg 2014), or Sirius and Vega (Bohlin 2014). Although Cξ

are usually not given for the photometric systems in the literature,
where only monochromatic fluxes at effective wavelengths of the
filters are listed, all zero-point constants are well-defined quantities
(Bessell et al. 1998; Cox 2000; Girardi et al. 2012; Casagrande &
VandenBerg 2014).

The advantage of the magnitude system is that it works even if Cξ

are unknown. Since zero-point constants cancels out, only ratio of
fluxes can be determined by subtracting apparent magnitudes; then
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knowing the absolute flux of one star is sufficient to calculate the
absolute flux of the other star from their magnitude differences. On
the other hand, unique (unchanging) Cξ for each band is there to
define the intrinsic colour indexes (if there are no interstellar and
atmospheric effects). Therefore, photometric bands and their special
zero points (definite fluxes unique to each band) are natural for the
astronomical photometry to work.

Apparent visual magnitude of a star could be expressed as

V = −2.5 log fV + CV = −2.5 log
∫ ∞

0
Sλ(V )fλdλ + CV, (6)

where fV = ∫ ∞
0 Sλ(V )fλdλ is the V flux reaching to the telescope (no

interstellar and atmospheric effects), Sλ(V) is the V-band transparency
function, fλ is the monochromatic flux coming from the star, and CV

is the zero-point constant for the V band. Similarly, it can be adopted
for bolometric apparent magnitudes as

mBol = −2.5 log fBol + CBol = −2.5 log
∫ ∞

0
fλdλ + CBol, (7)

where fBol = ∫ ∞
0 fλdλ is the bolometric flux reaching to the telescope

(again, no interstellar and atmospheric effects) and CBol is the zero-
point constant for the bolometric apparent magnitudes. Using the
nominal solar values, mBol,� = 26.832 mag (Cox 2000), and fBol,� =
1361 Wm−2 (IAU 2015 GAR B2), one can calculate the value of the
zero-point constant CBol =−18.997 351 ... mag for the apparent bolo-
metric magnitudes. Consequently, fBol = 2.518 022 ...10−8 Wm−2

could be calculated using the same CBol = −18.997 351 ... mag for
making mBol = 0.

Bolometric apparent magnitude appears as if there is brightness
at another band, in addition to the other bands of the Johnson
photometry. This hypothetical brightness, however, represents a band
of radiation so broad that it covers all wavelengths; thus, it represents
the total radiation of a star. As is calculated for obtaining the intrinsic
colour of an unreddened star, subtracting side by side equation (6)
from equation (7), according to its basic definition, BCV becomes

BCV = mBol − V = 2.5 log
fV

fBol
+ (CBol − CV )

= 2.5 log

(∫ ∞
0 Sλ(V )fλdλ∫ ∞

0 fλdλ

)
+ C2. (8)

Here is the answer to the question of why there is an arbitrary
constant in equation (1), despite the definite integrals not taking any
constant. C2 is certainly not a constant of integration, even though it
appears as if it is one. It is a natural result of absolute photometry.
Also, it is not correct to call it ‘arbitrary’ anymore, because C2 =
CBol − CV, where CBol and CV are the definite zero-point constants
of the bolometric and visual magnitudes according to equations (7)
and (6).

2.3 Absolute magnitudes and zero point constants

Absolute magnitudes are also expressed by the same notation as
apparent magnitudes. Thus, the absolute magnitude of a star at the
photometric band ξ is expressed as

Mξ = −2.5 log Fξ + Cξ (9)

and the bolometric absolute magnitudes as

MBol = −2.5 log FBol + CBol (10)

then, M and F stand for absolute magnitudes and fluxes if a star is
moved to a distance of 10 pc. Now the question is: What happens to

the zero-point constants Cξ and CBol? Are they the same constants
used for apparent magnitudes?

It is logical to assume that the zero-point constants of absolute
magnitudes are the same as the zero-point constants of apparent
magnitudes because the zero-point flux for a photometric band, which
marks zero magnitude on the magnitude scale, is independent of the
distance. But still this can be tested by taking the CBol of the apparent
bolometric magnitudes given above, and using MBol,� = 4.74 mag,

4.74 = −2.5 log FBol,� − 18.997 351..., (11)

then the bolometric flux of the Sun, if it is at a distance of 10 pc
FBol,� = 3.199 334 ... × 10−10 W m−2 is obtained. If this flux is
multiplied by the surface area of a sphere with a radius of 10 pc, it
gives L� = 3.828 × 1026 W. This is the nominal solar luminosity
announced by IAU GAR B2, which was calculated from the solar
constant S� = 1361(± 1) Wm−2. Therefore, we can claim confidently
that the zero-point constants of apparent (equation 7) and absolute
bolometric magnitudes (equation 10) are the same CBol(fluxes) =
−18.997 351 ... . Moreover, the same conclusion could be obtained
by BCξ = MBol − Mξ = mBol − mξ .

Using the part

MBol − Mξ = mBol − mξ (12)

and moving mξ to the left, then moving MBol to the right algebraically,
the equation becomes

mξ − Mξ = mBol − MBol. (13)

Both equations (12) and (13) are valid. The former is the basic
definition of BCξ while the latter is the distance modulus, which is
equal to (5log d − 5), where d is in parsecs. Since the wavelength
dependent zero-point constants are cancelled between the equal signs
separating various photometric bands, equation (13) tells us that the
distance modulus is independent of wavelengths. This could happen
only if the zero-point constant for apparent and absolute magnitudes
have the same value (Table 1). While the distance modulus is
independent of wavelengths, conversely, the bolometric corrections
defined by equation (12) are dependent on wavelengths (or bands).
Thus, bolometric correction is a unique feature of a star, as with its
intrinsic colours.

2.4 From a flux ratio to a luminosity ratio

Taking one of the Mξ (equation 9), let it be MV, and by subtracting it
side by side from MBol (equation 10), it can be written

MBol − MV = 2.5 log
FV

FBol
+ (CBol − CV), (14)

where FV/FBol is the ratio of visual flux to bolometric flux reaching to
Earth (no atmospheric and interstellar effects) if the star is moved to
a distance of d = 10 pc. According to the basic definition of BCV, this
equation and equation (8) are equivalent. Hence, it can be written

FV

FBol
= fV

fBol
, (15)

which means that the ratio of visual flux to bolometric flux for a star
is independent of its distances. Therefore, some more equal signs
could be added:

FV

FBol
= fV

fBol
= fV(S)

fBol(S)
= 4πR2fV (S)

4πR2fBol(S)
= LV

L
= fV

σT 4
. (16)

The third term is the flux ratio on the surface of the star. Multiplying
the surface fluxes (visual and bolometric) by 4πR2 (surface area of a
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4236 Z. Eker et al.

Table 1. Zero point constants for calculating stellar luminosities or fluxes.

CBol for L L0 Unit CBol for fBol CBol for FBol f0 Unit

71.197 425 ... 3.0128E+28 W −18.997 351 ... −18.997 351 ... 2.5180E-08 W m−2

88.697 425 ... 3.0128E+35 erg s−1 −11.497 351 ... −11.497 351 ... 2.5180E-05 erg s−1 cm−2

star), then its equivalent, the luminosity ratio (LV/L), could be added.
Finally, by replacing the surface bolometric flux by σT4, one can
see the primary parameter (effective temperature) to determine the
BC values of stars according to the rightmost ratio. After replacing
FV/FBol in equation (14) by LV/L, one can deduce

MBol = −2.5 log L + CBol, (17)

and,

MV = −2.5 log LV + CV. (18)

We must be careful here; the CBol providing MBol of stars from
their L is different (CBol = 71.197 425 ... mag) from the CBol

providing the same MBol from its bolometric flux if it is at 10 pc
[CBol(fluxes) = −18.997 351 ... mag]. Similar case must be true for
the apparent magnitudes. Subtracting equation (18) from equation
(17), the following could also be written for BCV

BCV = 2.5 log
LV

L
+ C2, (19)

where C2 = CBol − CV. Here, one must be aware of the fact that
the zero-point constants proper to the luminosities (equations 17
and 18), which are different from the zero-point constants for fluxes
(equations 6, 7 and 9, 10).

2.5 Analytical evidence for limited arbitrariness and positive
BC

According to equations (1), (8), and (19), the arbitrariness attributed
to the zero-point constant (C2) of the BCV scale cannot be called
absolute arbitrariness but it could be called limited arbitrariness. In
other words; no value of C2 from minus infinity to plus infinity
(absolute arbitrariness) satisfies these equations. This is because the
visual to bolometric flux ratio, or ratio of luminosities LV to L, is
a unitless number [(0 < fV/fBol < 1) or (0 < LV/L < 1)] between
zero and one. Logarithms of numbers between zero and one are all
negative. Only a positive C2 would satisfy equations (1), (8), and (19)
if the BCV of a star is zero, which occurs at MBol = MV. Therefore,
from equations (1) and (14):

C2(V ) = −2.5

∣∣∣∣log
fV

fBol

∣∣∣∣
BCV=0

. (20)

This equation could easily be adapted for C2(ξ ) by replacing fV by
fξ . Thus, each band has to be evaluated at the point BCξ = 0, which
occurs at MBol = Mξ . Since the flux of each band, not only the visual
flux, is less than the bolometric flux, the right-hand side of equation
(20) is a positive number. The ratio in the logarithmic term has no
chance to be either zero or one, therefore, C2(ξ ) is strictly a number
greater than zero.

The C2(ξ ) is still arbitrary depending upon which star is chosen
for BC = 0 mag, but the arbitrariness implied by equations (1), (8),
and (19) is not an absolute arbitrariness, which would also include
zero and negative numbers. Since only positive numbers are possible
for C2(ξ ), the type of the arbitrariness is limited.

After knowing the fact that C2(ξ ) > 0, it becomes easy to
investigate whether a positive BC exists or not. From equation

(20) the following could be deduced: if the absolute values of the
logarithmic terms in equations (1), (8), and (19)∣∣∣∣2.5 log

fξ

fBol

∣∣∣∣ < C2(ξ ). (21)

is less than the value of the zero-point constant C2(ξ ), the BCξ values
are positive, if∣∣∣∣2.5 log

fξ

fBol

∣∣∣∣ > C2(ξ ). (22)

the BCξ values are negative. It can therefore be concluded here that
a limited number of positive BC values is inevitable.

A limited number of positive BC may also be deduced from
following:

LV = L × 10
BCV −C2

2.5 , (23)

which is another form of equation (19). All of the BCV values smaller
than C2, including zero and limited range of positive numbers (0 ≤
BCV < C2), are valid to produce a LV which is less than L. BCV = C2

would mean LV = L and BCV > C2 would produce LV > L, which
are invalid cases because LV ≥ L is unphysical.

3 D ISCUSSION

3.1 Positive bolometric corrections; problematic or not
problematic?

There should not be any other option in between; a positive BC is
either a conceptual problem, or not. No one should say ‘whether
the BC values are positive or negative is subject to the caprice of
astronomers’ and then ask the question ‘Does anybody really care
whether BCs ‘have to be’ positive or not?’

Positive science does not operate on the caprice of scientists
and care must be given not to stray from scientific consistency.
A positive BC was already said to contradict the fact that ‘the
bolometric magnitude of a star ought to be brighter than its V
magnitude’ (Torres 2010). Moreover, to emphasize the importance
for BC numbers to be negative, Cox (2000) listed the smallest BC
of stars (main-sequence, giants, and supergiants) as ‘−0.00’ for
F2 supergiants in the astronomers’ handbook Allen’s Astrophysical
Quantities, 4th edition, on page 389. The negative sign appearing as
‘−0.00’ indicates that BCs are not even neutral (zero) but strictly
negative numbers. ‘−0.00’ implies that the BCV of F2 supergiants
could contain a numeral other than zero, with at least two zeros after
the decimal point.

A positive BC is also related to the arbitrariness problem attributed
to the zero-point of the BC scale. Arbitrariness, especially absolute
arbitrariness, provides BC produces the freedom to make a systematic
shift of BCV − Teff diagram or on the tabulated BC numbers to
make them all negative in order to avoid a dilemma. Two schools of
thought have emerged. One group of astronomers intentionally apply
a systematic shift to avoid even a small single positive BC (because
this solves the problem of contradicting the fact that ‘the bolometric
magnitude of a star ought to be brighter than its V magnitude’),
while the other group of astronomers keep positive BC in their list
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On the zero point constant of the BC scale 4237

and serve them to their users. The group keeping positive BC appears
problematic if the arbitrariness problem is not solved; the group could
be called agnostic or uncaring about the problems of positive BC. If
indeed there is a solution to the arbitrariness problems, users of BCV

− Teff relations or tabulated tables of BC do have a right to hear what
the solution is. If there is a solution, then the former group becomes
inconsistent. There is no way in between, either one of the groups
must give up its practice for consistent science, even if their practice
is several decades or centuries old.

3.2 Theoretical and observational support for a limited number
of positive BC

The analytical evidence for the limited arbitrariness and positive BC
presented in Section 2.5 could be considered as theoretical support
for a limited number of positive BC values, which appear from time-
to-time in the literature. As discussed in Section 2.5, although a
positive BC is inevitable analytically, there is no indication where
(or at what temperature) the zero-point of the BC scale for different
photometrical bands would occur. This is the kind of problem where
one should be able to see the existence of a limited number of positive
BC values, but leave the astronomer with the freedom to define the
zero-point optionally, at best conventionally. The applicability and
necessity of the decision by IAU 20015 GAR B2 is founded firmly in
this freedom. In other words, the zero-point of the BC scale suggested
by IAU 20015 GAR B2 would be consistent with the analytical
prediction if the zero-point is not at the peak (or above the peak) of
the BC − Teff curve. It has already been shown in Section 2.5 that
unphysical results such as LV = L would occur if the zero-point of the
BC scale is placed right on the peak of the curve, which means BCV

= C2. This case, however, is impossible according to equation (20).
The unphysical result LV > L occurs if the zero-point is placed above
the peak, that is, if BCV > C2, where C2 stands for the zero-point
constant for the BCV scale. Physically consistent results require BCV

< C2, which includes both positive (0 < BCV < C2) and negative
(BCV < 0) bolometric corrections.

All empirical BCV vales computed from the observed stellar pa-
rameters (Johnson 1964, 1966; Code et al. 1976; Flower 1977, 1996;
Bessell et al. 1998; Sung et al. 2013; Casagrande & VandenBerg
2018; Eker et al. 2020) could be considered as observational support
for the existence of a limited number of positive BCV. The V-
band empirical bolometric correction coefficients of main-sequence
stars computed most recently by Eker et al. (2020) are of special
importance not only because they were computed from the most
updated and/or most accurate stellar parameters, but also because
the nominal values MBol,� = 4.74 mag, and L� = 3.828 × 1026 W
were used in computing the BCV values of 400 stars, as suggested
by IAU 2015 General Assembly Resolution B2.

According to the results of Eker et al. (2020), the peak of the BCV

− Teff curve occurs at Teff = 6897 K, at about a spectral type ∼F1V
with a peak value BCV,max = 0.95 mag and the two zero points (BCV

= 0 mag) occur at effective temperatures Teff,1 = 5859 K, and Teff,2

= 8226 K corresponding to the spectral types ∼G2V and ∼A5V,
respectively. Thus, according to the BCV − Teff curve of Eker et al.
(2020), main-sequence stars within the temperature limits 5859 <

Teff < 8226 K have positive BCV and the rest, that is, the earlier and
later spectral types, have negative BCV.

Therefore, here we can go beyond the norm to say ‘bolometric cor-
rection of a star is not always negative’. Considering the widespread
effect of the well-known axiom ‘the bolometric magnitude of a star
ought to be brighter than its V magnitude’ among practitioners for
about a century, this conclusion is not just a new result but a paradigm

change, which is supported not only by theoretical and observational
evidence but also according to the convention announced by IAU
2015 GAR B2.

3.3 Comparing MBol and MV rather than L and LV is misleading

Comparing the bolometric magnitude of a star to its V magnitude,
and then to say which one is brighter, could be misleading be-
cause the human senses are not absolute. Thus, the perceptions
of the eye could be deceiving. Even though there is one-to-one
correspondence between luminosity and corresponding brightness
in magnitude units, as they are displayed by equations (3), (17),
and (18), the same conclusion cannot be drawn by comparing total
luminosity (whole spectrum) to one of its parts (LV formed by visual
photons).

First of all, luminosities are physical but magnitudes are not
physical quantities. Comparing physical quantities is definitely more
meaningful and definite than comparing non-physical, which is most
probably subjective rather than being objective. Then, magnitude is
the measure of human perception of a luminosity, which was first
suggested by Hipparchus of Nicaea (190-120 BC) and reformulated
by Norman Robert Pogson in 1854 by defining a first magnitude
star as a star that is 100 times brighter than a sixth magnitude
star (Cox 2008), which is still used today. Thus, eye comparisons
of magnitudes are meaningful only if they are conducted in the
same wavelength range within the visible part of the electromagnetic
spectrum; otherwise, meaningless to indicate which one of two
stars is more luminous due to different eye sensitivity at different
wavelengths.

Since the magnitude scale is in reverse order, a brighter magnitude
is shown by a smaller number. Consequently, the phrase that
‘bolometric magnitude of a star ought to be brighter than its V
magnitude’ indicates that the bolometric magnitude of a star has
a smaller numerical value than its V magnitude. Then, subtracting
a bigger number (MV or V) from a smaller number (MBol or mBol),
one can deduce a negative number for the bolometric correction
of a star according to the basic definition (BCV = MBol − MV =
mBol − V), which is confirmed only for stars of the earliest and
latest spectral types but not for main-sequence stars of spectral types
∼(G2-A5). Drawing attention to comparing MBol and MV rather than
L and LV, the phrase ‘bolometric magnitude of a star ought to be
brighter than its V magnitude’ could also be considered misleading
because the conclusion drawn by this comparison is not firmly
established, that is, bolometric corrections are not always negative
according to the observational and theoretical evidences discussed
above.

3.4 Visualizing a fictitious problem: arbitrariness

Assuming the absolute bolometric magnitude of the Sun (MBol,�)
is arbitrary (Casagrande & VandenBerg 2018), when computing the
absolute bolometric magnitude (MBol) for a star according to equation
(2) means that the computed MBol of the star is also arbitrary. This
way, there could be an infinite number of MBol values computed from
a single luminosity. This situation is visualized in Fig. 1 by three
preferred MBol,� values using the luminosities of 400 stars which
were selected by Eker et al. (2020) for computing their BCV values,
from which the BCV − Teff relation for nearby main-sequence stars
is predicted.

The filled and empty circles in the middle of Fig. 1 show
MBol and MV values of the 400 main-sequence stars plotted as a
function of stellar mass in solar units. Despite the stellar luminosities
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4238 Z. Eker et al.

Figure 1. Filled circles (•) are MBol of main-sequence stars (Eker et al. 2020) calculated according to equation (2) using MBol,� = −0.26 mag (upper), MBol,�
= 4.74 mag (middle), MBol,� = 9.74 mag (lower). Empty circles (o) are absolute visual magnitudes MV, (o) for the same stars.

staying constant, because of the enforced arbitrariness (Casagrande &
VandenBerg 2018), the MBol values are shifted up or down according
to the adopted values of MBol,� as indicated on the figure. Only two
examples of all positive BC or all negative BC were indicated. That
is, if one prefers to use MBol,� = 9.74 mag, then all computed BCV

values would be positive, while choosing MBol,� = −0.26 mag makes
all BCV values negative (see Fig. 2).

If the absolute visual magnitudes (MV) of stars in Fig. 1 are
subtracted from the corresponding MBol, then the corresponding BCV

are obtained as a function of stellar mass (Fig. 2). The same BCV

data could be re-arranged according to stellar effective temperatures
(Fig. 3), which is the same BCV data from which Eker et al. (2020)
derived their BCV − Teff relation. The similar appearance of BCV −
M/M� and BCV − Teff is not surprising.

It is by definition, that a star has a unique MBol, thus a unique
BCV, coming from its unique L and MV. Only after both absolute
and limited discrete arbitrariness attributed to the zero-point of BC
scales is removed by IAU 2015 GAR B2 can such a consistency
be achieved. The arbitrariness attributed to MBol,�, (Casagrande &
VandenBerg 2018) violates this fact as displayed in Figs 1–3, so the
infinite number of BCV becomes inevitable. At this point, it can be
said that the arbitrariness attributed to MBol,� and the zero-point of the
BC scale is a fictitious problem caused by the method of computing
according to the basic definition (BCV = MBol − MV = mBol − V),
where the true value of MBol,� was not known, thus assumed to be
arbitrary before IAU 2015 GAR B2.

It may also be noticed here that the positive and negative occur-
rences of standard BCV values are also marked on Figs 2 and 3 where

the values above the horizontal line are positive. The very limited
number of positive occurrences is clearly apparent.

Stressing the uniqueness of a BC for a star at any band is no
different than the uniqueness of its MBol, MV, L, R, or Teff; there
should not be a function such as BC − Teff and/or BC − M/M�,
which could relate a BC value directly to a star’s Teff or mass. Similar
to the MLR, MRR, and MTR functions of Eker et al. (2018), which
are not the functions to provide the L, R, or Teff of a star given mass
but to provide mean values of L, R, and Teff of main-sequence stars
of given mass. According to stellar structure and evolution theories
(Clayton 1968) true L, R, and Teff are unique for a star which depend
on its mass, chemical composition, and age. In the same way of
thinking, BC − Teff or BC − M/M� should provide typical (a kind of
mean value) BC value for the typical effective temperature of main-
sequence stars. Thus, the typical mass, typical effective temperatures,
and typical BC are related. The unique BC of a single star is provided
only by the basic definition of BC (BCξ = MBol − Mξ = mBol − mξ ).
Scatter of data on a BCV − Teff relation are not really due only to
observational errors, as in the case of SED represented by a Planck
function, but also due to differences of mass, chemical compositions,
and age. Thus, the BCV − Teff relation derived by Eker et al. (2020)
cannot be used to calculate the BCV of a star with a Teff. It rather
provides a mean value of BCV for main-sequence stars having a
typical Teff value, which could be related to a typical mass according
to the MTR of Eker et al. (2018), or could be derived by directly from
the masses of stars, as shown in Fig. 2 in this study. The tabulated
BC tables are also not free from this problem. They too provide a
mean BCV for a given mean value of a stellar parameter.
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On the zero point constant of the BC scale 4239

Figure 2. All positive (upper MBol,� = 9.74 mag), standard (middle MBol,� = 4.74 mag) and all negative (below MBol,� = −0.26 mag) BCV coefficients of the
main-sequence stars (Eker et al. 2020) as a function of log M/M�.

3.5 Importance of standard BC

There are two ways to obtain a standard BCξ for a star from its
luminosity (L):

(1) Obtain its MBol from its L according to equation (3) using CBol

= 71.197 425 ... if L is in SI units, CBol = 88.697 425 ... if L is in cgs
units.

(2) Obtain its MBol from its L according to equation (2) using
nominal solar bolometric absolute magnitude MBol,� = 4.74 mag,
and the nominal solar luminosity L� = 3.8275 × 1026 W.

After having its unique (standard) MBol from its unique L according
to one of the two methods above, its absolute magnitude (Mξ ) in the
band ξ should be calculated properly from its de-reddened apparent
magnitude (mξ ) using its most accurate stellar parallax. Then, the
difference MBol − Mξ could be called standard BCξ . Using any other
CBol in the method (1) and any other non-standard MBol,� and/or
L� values in the method (2) is sufficient to make it a non-standard
(BCξ ). Finally, the standard BC of many stars, e.g. main-sequence
stars, could be used to calculate the standard BCV − Teff curve, as
done by Eker et al. (2020).

Although both methods are equivalent, the method (1) is primarily
advised since it is more straightforward, and does not demand addi-
tional knowledge other than CBol. Standard BC tables or standard BC
− Teff curves are very important for standardizing stellar luminosities.
It also saves time for users trying to find out from inspecting which
value of MBol,� were used at the beginning, and prevents them from
any kind of making mistakes by using the improper MBol,� and L�
when re-computing unknown L.

Considering the non-standard tabulated tables of BCV, especially
where all BCV are less than zero, our estimate is that there could
be about ∼0.1 mag differences between standard and non-standard
BC of a star. An approximate ∼0.1 mag difference, however, is
equivalent to a ∼5 per cent systematic error in the distances (or
trigonometric parallaxes) and about 10 per cent systematic error in
the stellar luminosities. Such uncertainty was tolerable in the era
before Gaia. However now, after Gaia, it is no longer tolerable.
Among 206 binaries used for establishing the standard BCV − Teff

relation of nearby main-sequence stars by Eker et al. (2020), who
relied on Gaia Data Release 2 distances (Gaia Collaboration 2018),
120 systems (∼60 per cent) have 2 per cent or better accuracy in the
trigonometric parallaxes.

Reducing the uncertainties of stellar L by standard BC is not
only important for internal structure and evolution theories, which
demand not only the most accurate observational parameters (mass,
radius, temperature, luminosity), but are also very important for
galactic and extragalactic astronomy, even cosmology and Hubble
law; the luminosity functions of galaxies all require better stellar
luminosities.

4 C O N C L U S I O N S

The zero-point constant of any BC scale [C2(ξ )] must be a positive
number according to equations (1), (8), (14), and (19) due to the fact
that the apparent flux (0 < fξ /fBol < 1) or absolute flux (0 < Fξ /FBol <

1) or luminosity (0 < Lξ /L < 1) of a star, which is limited by a filter,
is less than the apparent bolometric, or absolute bolometric fluxes
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4240 Z. Eker et al.

Figure 3. All positive (upper MBol,� = 9.74 mag), standard (middle MBol,� = 4.74 mag) and all negative (below MBol,� = −0.26 mag) BCV coefficients of the
main sequence stars (Eker et al. 2020) as a function of log Teff.

or total luminosity of the star. A positive C2(ξ ), however, require at
least some of the BCξ values to be positive.

Consequently, shifting BC values to make them all less than
zero is not necessary, despite any arbitrariness attributed to it. In
this study, it became clear to us that the zero-point constant C2 in
equation (1) is not a constant of integration, even though it looks
like one. This is because definite integrals never take a constant
of integration. In reality, it is a zero-point constant imposed by
definitions of bolometric and visual magnitudes appearing in the
basic definition according to absolute photometry [see equations
(8), (14)]. It is shown in this study that C2 = CBol − CV. Since
the zero points of existing photometric systems are all well-defined
(Casagrande & VandenBerg 2014), but only very recently has IAU
2015 GAR B2 defined the zero-point of bolometric magnitudes,
then earlier astronomers had no option but to assume it arbitrary.
Only, after IAU 2015 GAR B2 is it understood to be well-defined
quantity because the definite values of CBol and CV leave no space
for it to be an arbitrary number, even though a definite value of
CV cannot be found easily in the literature [for each bandpass Cξ

could be derived using a star of known absolute flux, usually Vega
(Casagrande & VandenBerg 2014), or Sirius and Vega (Bohlin 2014)]
where usually monochromatic fluxes at effective wavelengths of
filters for an apparent magnitude zero are given (Bessell et al. 1998;
Cox 2000; Girardi et al. 2012; Casagrande & VandenBerg 2014).

A positive C2 implies CBol > CV. However one must be careful
here. CBol = 71.197 425 ... if L is in SI units, CBol = 88.697 425 ... if L
is in cgs units are for calculating L from MBol, or vice versa, according
to equation (3) or (17). The zero-point constant for equations (7) and

(10), where apparent and absolute bolometric fluxes reaching Earth
(if no atmospheric and interstellar effects) are related to apparent
and absolute magnitudes, is different. Perhaps, it is more proper to
indicate it as CBol(fluxes) = −18.997 351 ... mag (IAU 2015 GAR
B2) corresponding to a flux of 2.518 × 10−8 Wm−2 to make the
absolute and apparent magnitudes zero. Table 1 indicates which of
the zero-point constants are good for calculating stellar luminosities
or fluxes.

Arbitrariness attributed to the zero-point of the BC scale does not
exist in reality. It is a fictitious arbitrariness caused by the method
of computing or because the zero-point of bolometric magnitudes
was not yet fixed. Since C2 = CBol − CV and if CBol is not fixed,
then C2 become arbitrary. It is irrational to assume a star having
more than one BC or MBol. Absolute arbitrariness attributed to the
zero-point of BC scale, however, contradicts this fact because it
implies a star can have an infinite number of BC and MBol, which is
not true. Comments such as ‘... while the solar luminosity L� is a
measured quantity, MBol,� is an arbitrary zero-point and any value is
equally legitimate on the condition that once chosen, all bolometric
corrections are scaled accordingly’ are indeed incorrect because stars
can have only one MBol, and the Sun cannot be the only exception to
having an infinite number of absolute bolometric magnitudes.
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