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ABSTRACT
Methods of obtaining stellar luminosities (L) have been revised and a new concept, standard stellar luminosity, has been defined.
In this paper, we study three methods: (i) a direct method from radii and effective temperatures; (ii) a method using a mass–
luminosity relation (MLR); and (iii) a method requiring a bolometric correction. If the unique bolometric correction (BC) of a
star extracted from a flux ratio (fV/fBol) obtained from the observed spectrum with sufficient spectral coverage and resolution are
used, the third method is estimated to provide an uncertainty (�L/L) typically at a low percentage, which could be as accurate
as 1 per cent, perhaps more. The typical and limiting uncertainties of the predicted L of the three methods were compared.
The secondary methods, which require either a pre-determined non-unique BC or MLR, were found to provide less accurate
luminosities than the direct method, which could provide stellar luminosities with a typical accuracy of 8.2–12.2 per cent while
its estimated limiting accuracy is 2.5 per cent.

Key words: stars: fundamental parameters – stars: general.

1 IN T RO D U C T I O N

The luminosity of a star is not a directly observable parameter. Rather,
it is an empirical parameter to be computed from observable param-
eters: a radius (R) and an effective temperature (Teff). Therefore,
the most reliable stellar luminosities so far are the ones that are
calculated directly from the Stefan–Boltzmann law, L = 4πR2σT 4

eff ,
using the observed radii and effective temperatures of detached
double-lined eclipsing binaries (DDEBs; Andersen 1991; Torres,
Andersen & Giménez 2010; Eker et al. 2014, 2015, 2018, 2020).
These parameters are obtained from the simultaneous solutions of the
radial velocity and eclipsing light curves of DDEBs and/or analysis
of disentangled spectra of their components (Hadrava 1995; Bakış
et al. 2007). Except for a very limited number of nearby single
stars, which have radii available by interferometry and any kind of
observed effective temperatures, the direct method, alas, has a serious
defect. This method is not applicable to single stars and visual and
spectroscopic binaries (or multiple systems) because their stellar radii
are not observable directly. Moreover, effective temperatures implied
by intrinsic colours, in most cases, are also not observable because of
interstellar reddening. The direct method even faces difficulties for
contact, semidetached and even close binaries because of proximity
effects, which deform star shapes and thus the Stefan–Boltzmann
law is not applicable directly.

In addition to this limited primary source of stellar luminosities
(the direct method), there are two other secondary sources, which
indirectly provide stellar luminosities. These are indirect because
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both rely upon a prior relation determined by the most accurate
stellar parameters, mostly from DDEBs.

2 TWO S E C O N DA RY M E T H O D S

2.1 Mass−luminosity relations for predicting L

From a historical point of view, the first of the secondary sources is the
main-sequence mass–luminosity relation (MLR), L ∝ Mα . Despite
being applicable only to main-sequence stars, this method has the
power to increase the availability of stellar luminosities in the case
of single stars (if their masses are known or estimated somehow)
and visual binaries (or multiple systems) with orbital parameters.
If orbital parameters could be extracted from a visual orbit, then
component masses would be known according to Kepler’s third law.
Note that, unlike a visual binary with an orbital inclination deduced
from its visual orbit, a spectroscopic binary is without an orbital
inclination because it is not possible to deduce the orbital inclination
from the observed spectra. Therefore, spectroscopic binaries do not
provide the true masses of components, except for a mass ratio or a
mass function. Hence, this method is not applicable to spectroscopic
binaries unless orbital inclinations are somehow available.

The main-sequence MLR was discovered independently by
Hertzsprung (1923) and Russell, Adams & Joy (1923) empirically
in the middle of the first half of the 20th century. As newer and
more accurate data came along, it has been revised, updated and
improved many times (Eddington 1926; McLaughlin 1927; Kuiper
1938a; Petrie 1950a,b; Strand & Hall 1954; Eggen 1956; McCluskey
& Kondo 1972; Cester, Ferluga & Boehm 1983; Griffiths, Hicks &
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Milone 1988; Demircan & Kahraman 1991). Early relations were
demonstrated as mass–absolute bolometric magnitude diagrams,
some with the best-fitting curve and some without. First, Eggen
(1956) attempted to define the power of mass (alpha) so the relation
is expressed as L = μ3.1, where μ is defined as μ = a3/P2� 3 from
Kepler’s harmonic law in which a and � are the semimajor axis
and parallax of the double star in units of arcsec, P is orbital period
in yr and μ is the mass of the system in solar masses. Meanwhile,
McCluskey & Kondo (1972) tried to establish the relation as M =
αLβ , where M and L are the masses and luminosities of components
in which α and β are the constants determined on various mass–
absolute bolometric magnitude diagrams. However, Cester et al.
(1983), Griffiths et al. (1988) and Demircan & Kahraman (1991)
preferred to study a mass–luminosity diagram in order to define
unknown constants on the classical form of the MLR (L ∝ Mα).
This was done either by fitting a curve to all data or by dividing the
mass range into two (low-mass and high-mass stars) or three (high-
mass, intermediate-mass or solar low-mass stars) in order to define
the inclination of the linear MLR (power of M) and its zero-point
constant on log M−log L diagrams.

Andersen (1991) objected to defining any form of MLR and
preferred to display the log M−log L diagram without a curve fit,
because the scatter from the curve is not only due to observational
errors but also due to abundance and evolutionary effects. He claimed
that ‘[...] departures from a unique relation are real’. So, if there is
no unique function to represent data, why bother to define one?
Because of this objection, Henry (2004) and Torres et al. (2010)
also displayed their diagrams without a curve. Some authors, such as
Gafeira, Patacas & Fernandes (2012), Torres et al. (2010), Benedict
et al. (2016), Moya et al. (2018) and, recently, Fernandes, Gafeira
& Andersen (2021), have deviated from the tradition of defining the
MLR, which can be used in both directions (L computed from M or
M computed from L), with the idea that the luminosity of solar-type
single stars can be obtained from observations with fair accuracy
but not the mass (Fernandes et al. 2021). There are exceptions:
Gorda & Svechnikov (1998) preferred the form MBol = a + b log M,
where MBol is the absolute bolometric magnitude and M is the mass;
Henry & McCarthy (1993) preferred log M = aMξ + b for infrared
colours, where Mξ denotes the absolute magnitude at the J, H and
K bands, and log M = aM2

V + bMV + c is used for the V band to
express various MLRs, with unknown coefficients a, b and c to
be determined by data on the diagram; and Malkov (2007) defined
MLR and inverse MLR functions. Therefore, the MLR should be
established only for estimating the mass of single stars from other
astrophysical stellar parameters such as its luminosity, metallicity
(Z) and age, not for estimating luminosities from masses (Fernandes
et al. 2021). Nevertheless, the predicted relation is still called the
MLR despite the fact that it is not a relation solely between mass
and luminosity but also includes metallicity and age as observable
parameters. Devised for estimating mass rather than luminosity, the
MLR of this kind is not suitable for this study.

The classical MLR in the form L ∝ Mα was appreciated by
Ibanoğlu et al. (2006) when they were comparing MLRs for detached
and semidetached Algols. The tradition of the MLR in the form L ∝
Mα (or reducible to it) has been continued by Eker et al. (2015, 2018).
Note that any curve or a polynomial of any degree fitting data on a
log M−log L diagram is reducible to the form L ∝ Mα because the
derivative of the fitting function at a given mass gives the value of
alpha. The advantage of such an MLR is not only that it works both
ways (L from M, or M from L), but also that it permits one to relate
typical masses and luminosities of main-sequence stars in general.
Because in this study we are primarily interested in estimating typical

accuracies of mass and luminosities, the six-piece classical MLRs of
Eker et al. (2018), as the most recent determined MLRs, are more
suitable for this study than any of the other MLR forms.

Although L obtained from a classical MLR would be a unique
value for a given mass (M), it is akin to the mean value of
all luminosities from the zero age main-sequence (ZAMS) to the
terminal age main-sequence (TAMS) of stars with the same mass
but with different ages and various chemical compositions. Thus,
the uncertainty of obtained L is expected to be very large for those
who are looking for an accurate L of a star in question. Still, this
was the only method for producing the luminosities of single stars
with known masses and of visual binary or multiple systems with
visual orbits in earlier times, when the third source using bolometric
corrections (BC) was not available yet or the BC values were not as
accurate as today.

2.2 Bolometric corrections for predicting L

Perhaps the most powerful secondary method for obtaining L is the
method using bolometric correction (BC). It appears to be even more
powerful than the direct method not only because it is applicable to
all stars, single or binary (or multiple), but also because it is more
practical and easier to use. The method can even work with a single
observation at a preferred filter, let us say V filter. Nowadays, it could
be accurate at a millimag level, perhaps more accurate, if the star is
bright enough, though not a binary or a multiple system. For binaries
and multiple systems, however, the method requires the relative light
contributions of the components. The only disadvantage, compared
with the direct method, is that a trigonometric parallax (� ) and
reddening (or extinction) of the stars must be provided. Nevertheless,
despite these advantages, the method is still secondary because it does
not work if a pre-determined BC value is not available. These values
can be obtained from any of the tabulated BC tables in the literature,
or from the BC−Teff and BC−M/M� relations (Flower 1996; Eker
et al. 2020, 2021), or similar relations if available.

Analytical BC−Teff relations, however, have been determined only
by Flower (1996) and Eker et al. (2020). The rest of the available
BCs are all in tabular format (Kuiper 1938b; Popper 1959; McDonald
& Underhill 1952; Johnson 1964, 1966; Heintze 1973; Code et al.
1976; Malagnini et al. 1985; Cayrel et al. 1997; Bessell, Castelli &
Plez 1998; Girardi et al. 2008; Sung et al. 2013; Chen et al. 2019),
where the variation of BC values with other stellar parameters, such
as spectral type, intrinsic colour, luminosity class, metallicity and
surface gravity, may also be given.

It was Torres (2010) who first noticed inconsistencies in the use
of BCV values that may lead to errors of up to 10 per cent or
more in the derived luminosity equivalent and about 0.1 mag or
more uncertainty in the bolometric magnitudes. According to Torres
(2010), the problems arise from the arbitrariness attributed to the
zero-point of the BC scale. Recently, Eker et al. (2021) revised the
zero-points of the BC scales on the tabulated tables and confirmed
Torres (2010) independently. According to the results of Eker et al.
(2021), there could be up to 0.1-mag systematic shifts of BC values
corresponding to systematic errors of up to 10 per cent in predicted
stellar luminosities, which are intolerable in the era after Gaia.

In this paper, we must first re-emphasize the IAU 2015 General
Assembly Resolution B2, which Eker et al. (2021) relied upon in
solving the problems originating from the arbitrariness attributed
to the BC scale. Fixing the zero-point of the BC according to the
IAU 2015 General Assembly Resolution would actually mean the
standardization of BC. Briefly, the standardization of BC values was
a solution suggested by Eker et al. (2021) to remove uncertainties
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on both stellar absolute bolometric magnitudes and predicted stellar
luminosities caused by the arbitrariness attributed to the zero-point
constants of BC values appearing in the literature.

Because stellar luminosities are used by astronomers to estimate
Galactic and extragalactic structures and luminosities, which can
then be used to estimate Galactic and extragalactic distances as well
as the luminous mass contained in galaxies and the Universe, the
standardization apparently is expected to have a widespread effect
on dark matter research, Hubble law and cosmological models.
For this reason, it is necessary to be careful about uncertainties
and errors reflected in BC values, which naturally propagate to
stellar luminosities. Not only are the luminosities of stars affected,
but also deep space and cosmology research. In this paper, we
intend to explain how these negative propagating effects could be
minimized and how to estimate and compare accuracies of the stellar
luminosities predicted by the three methods. We also discuss the need
to emphasize the differences between standard and non-standard
luminosities.

3 DATA

The preliminary data for this study are taken from the Catalogue
of Stellar Parameters from the Detached Double-Lined Eclipsing
Binaries in the Milky Way (Eker et al. 2014), which contains 514 stars
(257 systems). Although the updated catalogue (Eker et al. 2018)
was expanded to include 639 stars (318 binaries and one eclipsing
spectroscopic triple), after removing stars with errors greater than
15 per cent on both mass and radius, and eliminating stars belonging
to globular clusters, then finally choosing main-sequence stars with a
mass of 0.179 ≤ M/M� ≤ 31 and metal abundance 0.008 ≤ Z ≤ 0.040
ranges within the limits of theoretical ZAMS and TAMS according
to PARSEC models (Bressan et al. 2012), 509 stars were retained by
Eker et al. (2018) to study the MLR of the sample representing the
nearby stars in the Galactic disc in the solar neighbourhood.

The most accurate stellar luminosities and propagated uncertain-
ties were calculated according to the direct method (method 1) using
the most accurate radii and effective temperatures and the associated
observed uncertainties of the 509 main-sequence stars, which are
the ‘components’ of DDEBs in the updated catalogue. In this study,
we use the six-piece MLRs in the form of log L = a log M + b
calibrated by the data on the log M−log L diagram covering the mass
range 0.179 ≤ M/M� ≤ 31 and metal abundance range 0.008 ≤ Z
≤ 0.040 for the main-sequence stars in the Galactic disc in the solar
neighborhood by Eker et al. (2018).

4 R E L AT I V E AC C U R AC I E S AC C O R D I N G TO
T H E TH R E E M E T H O D S

4.1 Relative uncertainty of L according to method 1

The uncertainty of the luminosity by the direct method using the
Stefan–Boltzmann law can be calculated by

�L

L
=

√(
2
�R

R

)2

+
(

4
�Teff

Teff

)2

. (1)

where �R/R and �Teff/Teff are relative observational random errors
of a star’s radius and effective temperature. These usually come
from simultaneous solutions of the light and radial velocity curves
of DDEBs and spectral analysis of the disentangling spectra of the
system’s components.

4.2 Relative uncertainty of L according to method 2

In order to estimate relative uncertainty of L using the method of
error propagation, the form of the adopted MLR (L ∝ Mα) indicates

�L

L
= α

�M

M
, (2)

where �M/M is the relative uncertainty of the observed mass of a
star, α is the power of M and �L/L is the relative uncertainty of the
predicted luminosity. According to Eker et al. (2015, 2018), equation
(2) is invalid because the dispersions on the log M−log L diagram
are not only due to observational uncertainties of M, but also due to
the differences in the ages and chemical compositions of the stars
in the sample (Andersen 1991; Torres et al. 2010; Eker et al. 2015,
2018). It is better to use

�L

L
= SD

0.4343
, (3)

where SD is the standard deviation of data from the MLR function,
which should be chosen according to the mass of the star in
question. There are six MLR functions with standard deviations and
inclinations, already computed by Eker et al. (2018), which are used
in this study. Only if the cases are

α
�M

M
>

SD

0.4343

would equation (2) then be valid. Because the typical relative
uncertainties of M are in the order of 1–2 per cent (Eker et al.
2014), equation (2) is not valid. It would be valid for stars with
relative uncertainties bigger than about 6 per cent for low-mass (M <

2.4 M�) stars, and relative uncertainties bigger than about 10 per cent
for high-mass (M > 2.4 M�) stars (Eker et al. 2015).

4.3 Relative uncertainty of L according to method 3

The same data set of 509 main-sequence stars used for method 2 is
also used for method 3 here, which uses a pre-determined bolometric
correction (BC) for predicting the luminosity of a star. Unfortunately,
many of the binary systems containing the 509 stars as components
of DDEBs had to be eliminated because some of the binaries have not
been observed in standard V magnitudes, or the light contributions
of components in the V band could not be achieved, or a reliable
trigonometric parallax for the star (� ) did not exist, or reliable
interstellar reddening could not be found.

Eker et al. (2020) could find only 206 binaries that have at least
one component in the main sequence (194 systems with components,
eight systems with primaries, four systems with secondaries on the
main sequence). This leaves a total of 400 main-sequence stars that
are eligible to compute bolometric correction (BC) coefficients in the
V band. A standard BCV−Teff curve (a fourth-degree polynomial),
which is valid in the range 3100 ≤ Teff ≤ 36 000 K, was calibrated.
The coefficients of the polynomial, errors of the coefficients, standard
deviation (SD = 0.215) and correlation coefficient (R2 = 0.941)
have already been announced by Eker et al. (2020). Table 5 of Eker
et al. (2020), which contains the necessary statistics, was adopted for
this study as the basic data to compute the luminosity of a star (L)
according to method 3.

In this method, the L of a star could be achieved according to the
following relation,

MBol = −2.5 log L + CBol, (4)

where MBol is the absolute bolometric magnitude of the star
and CBol = 71.197 425. . . if L is in SI units, and/or CBol =
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88.697 425. . . if L is in cgs units (see IAU 2015 General Assembly
Resolution B2 and Eker et al. 2021). The only requirement is that the
MBol of the star must be known beforehand so that L can be extracted.
MBol is available according to following relation,

MBol = MFilter + BCFilter = MV + BCV, (5)

where MV and BCV are the absolute visual magnitude and associated
bolometric correction for the star in question. Notice that the absolute
bolometric magnitude of a star is independent of the filter used in
observations. Because V filter observations are the oldest and most
available, the V filter was chosen here to symbolize all BC values of
many photometric bands. If the BCV value of the star is available,
then an additional step must be taken to obtain MV directly from
observable parameters according to the following relation:

MV = V + 5 log � + 5 − AV. (6)

Here, V is the apparent visual magnitude, � is the trigonometric
parallax of the star, which is nowadays available up to 21 mag (Brown
et al. 2021), and AV is the extinction in the V band, which can be
ignored if the star is in the Local Bubble (Leroy 1993; Lallement
et al. 2019) or it can be estimated using galactic dust maps (e.g.
Schlafly & Finkbeiner 2011; Green et al. 2019).

It is clear in this method that the only uncertainty to propagate
up to L comes from MBol. It can be considered that a well-defined
constant (see IAU 2015 General Assembly Resolution B2) CBol does
not make any contribution, and thus

�L

L
= �MBol

2.5 log e
= 0.921 × �MBol. (7)

However, equation (5) indicates

�MBol =
√

�M2
V + �BC2

V + ZPE2
V. (8)

which means that there are three possible error contributions to
�MBol. These are: (i) random observational errors associated with the
absolute visual magnitude (�MV); (ii) the error of the BC value itself
(�BCV); (iii) the zero-point uncertainty of the BC scale (ZPEV). This
study primarily aims to estimate the amount of the zero-point error
of the BC scale if the BC value comes from non-standard bolometric
corrections, which are tabulated, or any other source. Consequently,
we can assume, just for now, that the first two contributions are zero.
Then, equation (7) changes to

�L

L
= 0.921 × ZPEV. (9)

from which one could obtain the relative uncertainty of L caused by
the uncertainty of the zero-point of the BC scale alone; that is, if the
absolute visual magnitude and bolometric correction are errorless.
Unfortunately, this is not the case nowadays because there are many
BC sources giving non-standard BC values. If one of them is used,
then it is better not to omit ZPEV in equation (8). Only if one uses a
standard BC in equation (5), could ZPEV in equation (8) be omitted,
which corresponds to ZPEV being equal to zero; then, there is no need
for equation (9). Now the question is how standard and non-standard
BC values can be recognized. This is explained in the following
section.

5 D E F I N I T I O N A N D R E C O G N I T I O N O F
STANDARD STELLAR LUMI NOSI TI ES

5.1 Definition of standard luminosities

We can be certain that the fixed zero-point constant in equation (4)
does not cause any uncertainty. Thus, the relative uncertainty �L/L
in equation (7) should not include a term implying an uncertainty
coming from CBol because the derivative of a constant is zero by
definition.

If and only if the BCV value used in equation (5) comes from a
standard source of BC coefficients is it unnecessary to include ZPEV

in equation (8). Then, it converts to

�MBol =
√

�M2
V + �BC2

V. (10)

which means that there are only two error contributions to �L/L: the
observational random errors of absolute visual magnitude and the
error of the BC value itself. Consequently, the L obtained by equation
(4), righteously, would be called standard luminosity. The concept
of standard BC was originally suggested by Eker et al. (2021).

The term ‘standard’ or ‘non-standard’ before the word ‘luminos-
ity’ would be meaningful if the L of any star is calculated by the
method requiring a bolometric correction coefficient. If a standard
BC is used, which is already defined by Eker et al. (2021), the
computed L is called standard. In contrast, a non-standard BC value
makes the computed L non-standard. Standardization of BC values,
therefore, is equivalent to the standardization of stellar luminosities.
According to the definition of Eker et al. (2021), the tabulated values
of BCV could be considered as standard sources for the BCV values if
the nominal value of solar absolute bolometric magnitude MBol,� =
4.74 mag and the nominal solar luminosity L� = 3.828 × 1026 W,
as used in

MBol = MBol,� − 2.5 log
L

L�
, (11)

when computing MBol, where L requires observational R and Teff from
DDEBs (Eker et al. 2014, 2018). Then, a standard BCV is obtained
according to the basic definition of bolometric correction BCV =
MBol − MV.

5.2 Recognizing non-standard luminosities

Equations (4) and (11) are both valid for calculating L of a star from
its absolute bolometric magnitude. The validity is assured by

CBol = MBol,� + 2.5 log L�, (12)

according to Eker et al. (2021). As equation (4) and the nominal
values MBol,� = 4.74 mag and L� = 3.828 × 1026 W were introduced
only recently, any other non-standard values of MBol,� and L� used in
computing a BC source (tabulated BC values or BCV−Teff relation)
most likely would not produce CBol = 71.197 425. . . mag if L is
in SI units, and/or CBol = 88.697 425. . . mag if L is in cgs units,
according to equation (12). This is the first and clear indication that
there is a zero-point error in the BC value used, which certifies that
it is not a standard BC.

It is unlikely, but still a possibility, that the non-standard MBol,� and
L� values would produce CBol = 71.197 425. . . mag if L is in SI units,
and/or CBol = 88.697 425. . . mag if L is in cgs units, according to
equation (12). This mathematical possibility is unavoidable because
there could be an infinite number of MBol,�, L� pairs to produce the
same CBol. This is the second type (an unseen indication) of zero-
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Table 1. Comparison of BCV values attributed to the Sun and zero-point constants of bolometric magnitude scale (CBol) and corresponding MBol,� and L�
according to various authors in the near past.

V MV MBol BCv f (×106) F (×1010) L (×1033) CBol Reference
Order (mag) (mag) (mag) (mag) (erg cm−2 s−1) (erg cm−2 s−1) (erg s−1) (mag)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1 −26.74 4.83 4.75 −0.08 1.36 6.284 3.826 88.70686 Allen (1976)
2 −26.79 4.87 4.74 −0.13 1.37 6.329 3.853 88.70450 Durrant (1981)
3 −26.74 4.83 4.64 −0.19 1.37 6.330 3.850 88.60365 Schmidt-Kaler (1982)
4 −26.76 4.81 4.74 −0.07 1.371 6.334 3.856 88.70534 Bessell et al. (1998)
5 −26.75 4.82 4.74 −0.08 1.367 6.322 3.845 88.70224 Cox (2000)
6 −26.76 4.81 4.75 −0.06 1.368 6.324 3.846 88.71252 Torres (2010)
7 −26.76 4.81 4.75 −0.06 1.361 6.294 3.828 88.70729 Casagrande & VandenBerg (2018)
8 −26.76 4.81 4.74 −0.07 1.361 6.294 3.828 88.69743 Eker et al. (2020)
9 −26.76 4.81 4.645 −0.165 1.361 6.294 3.828 88.60229 This study

point error in the BC values used. Later, in Section 6, we discuss how
to treat these two different types of zero-point errors.

For now, let us review some of the contemporary BCV sources
in the near past with different CBol and corresponding non-standard
MBol,� and L� values. Bessell et al. (1998) gave a table for comparing
the estimated BCV of the Sun by various authors, who preferred to
adopt MBol,� rather than adopting BCV of the Sun. Relying on the
observed apparent visual magnitude of the Sun (−26.76 mag; Bessell
et al. 1998; Torres 2010), (−26.74 mag; Allen 1976; Schmidt-Kaler
1982), (−26.79 mag; Durrant 1981) and adopting either one of the
quantities MBol,� or BCV,� was inevitable in those years because the
zero-point of the BCV scale was not yet fixed, so it was assumed
to be arbitrary. Adopting one of these quantities meant defining a
zero-point for tabulated BCV values. Here we have reconstructed a
similar table (Table 1), which enables us to compare various CBol

values as well as the MBol,� and L� values defining it.
The columns of Table 1 are self-explanatory. The sequence

number, apparent visual magnitude (a measured quantity), and the
absolute visual and adopted absolute bolometric magnitudes of the
Sun are given in the first four columns. The BCV of the Sun as
the difference between absolute bolometric and visual magnitudes
is in column 5. The corresponding solar fluxes just outside the
Earth’s atmosphere and on the solar surface are given in columns
6 and 7, while the corresponding solar luminosity is in column
8. Column 9 displays the standard (row number 8) and other
figures non-standard zero-point constants (CBol) according to various
BCV sources. The references are in column 10 in chronological
order.

Fig. 1 compares the nominated bolometric zero-point constant
and the nominal MBol,� or BCV,� values of the Sun to the corre-
sponding values of non-standard sources. A horizontal solid line
in Fig. 1(a) marks the nominated zero-point constant (CBol =
88.697 425. . . mag) of IAU 2015 General Assembly Resolution B2.

Except for values (3), from Schmidt-Kaler (1982), and (9), which
is the test point of this study in Fig. 1(a) with a special MBol,� (4.645
mag) to make all BC values less than zero, the other CBol values in
Fig. 1(a) lie close to the horizontal solid line with various values
that are all greater than CBol = 88.697 425. . . mag (see Table 1). The
largest CBol (88.712 523) is from Torres (2010). According to Table 1
and Fig. 1(a), the difference between the largest and smallest CBol is
0.110 mag, which is equivalent to 10.13 per cent uncertainty on the
predicted stellar luminosities, even if MV and BCV are errorless. The
least-deviated CBol is associated with Cox (2000), which has a CBol

value 0.005 mag bigger than the nominal value, corresponding to a
0.46 per cent error on L.

Fig. 1(b) compares the nominal value of L� (horizontal solid
line) to the adopted L� values (data) of the other BCV sources.
The two horizontal dashed lines mark the random observational
error limits associated with the nominal solar luminosity, L� =
3.8275 ± 0.0014 × 1033 erg s−1 (see IAU General Assembly Reso-
lution B3). This means that in an ideal case (no error contributions
from MV and BCV and ZPE), a standard stellar luminosity could be
as accurate as 0.036 per cent (4 out of 10 000).

Note that the use of a non-standard L� in equations (4) and (11)
would produce a systematic error on L even if MV and BCV are
errorless and no zero-point error exists. The largest of such systematic
errors appear as an overestimation of stellar luminosities of about
0.74 per cent if one uses the BCV values of Bessell et al. (1998),
who has the biggest L� in Table 1. The zero-point errors caused
only by non-standard L� are apparently less than 0.74 per cent
according to Table 1 and Fig. 1(b). The value of L� from Cox (2000)
in Table 1 implies a 0.46 per cent zero-point error in Fig. 1(b),
which confirms the same amount of error caused by his non-standard
CBol according to Fig. 1(a). According to Fig. 1(c), because Cox
(2000) uses MBol,� = 4.74 mag, which is the nominal value, one
assumes no zero-point error contribution from it. Despite an error
of approximately 0.46 per cent error on L according to Table 1 and
Fig. 1, the BC values of Cox (2000) all appear to have been shifted
0.095 mag towards smaller (more negative) values compared to the
BC values of Eker et al. (2020).

However, the 0.095 mag systematic shift, creating a difference
between the BCV (max) of Eker et al. (2020) and Cox (2000) means
an error of about 8.85 per cent on stellar luminosities. In other words,
the BCV values of Cox (2000) dominate the zero-point errors and
propagate within BCV systematically. Thus, anyone who uses the
BCV values of Cox (2000) will overestimate the stellar luminosities
by about 9 per cent, without even including the observational errors
and the error of the BCV value used.

Fig. 1(c) compares the nominal value 4.74 mag (horizontal solid
line) to the other adopted MBol,� (data) values of the other BCV

sources. The nominal value is that used by Durrant (1981), Bessell
et al. (1998), Cox (2000) and Eker et al. (2020). The non-standard
value 4.75 mag is that used by Allen (1976), Torres (2010) and
Casagrande & VandenBerg (2018). Another non-standard value,
MBol,� = 4.64 mag, is used by Schmidt-Kaler (1982), which is very
close to our non-standard trial value of this study (Table 1, Fig. 1c).

It can be concluded here that a non-standard stellar L is easy to
recognize. A standard L could be obtained only if standard bolometric
correction coefficients were used. One can recognize non-standard
bolometric corrections by checking whether nominal MBol,� and
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3588 Z. Eker et al.

Figure 1. Comparison of nominated bolometric zero-point constant and nominal MBol,� and L� values to the corresponding values of non-standard sources:
(1) Allen (1976); (2) Durrant (1981); (3) Schmidt-Kaler (1982); (4) Bessell et al. (1998); (5) Cox (2000); (6) Torres (2010); (7) Casagrande & VandenBerg
(2018); (8) Eker et al. (2020); (9) test point used to shift BCV−Teff curve to make all BCV ≤ 0 mag (this study).

nominal L� were used or not. Although the zero-point of absolute
bolometric magnitudes is given as CBol = MBol,� + 2.5log L�, the
nominal CBol does not necessarily guarantee standardization of the
pre-computed BCV values. On the contrary, a non-standard CBol

implies non-standard BCV values. BCV values could be considered
standard if and only if nominal MBol,� and nominal L� are used and
if the zero-point of the BC scale (C2) is calculated as Eker et al.
(2021) describes. Authors such as Cox (2000) assume it is arbitrary,
thus C2 = 0, in order to make all BCV less than zero (see Eker et al.
2021, and references therein). This is the case when the zero-point
error of the BC scale cannot be estimated from pre-assumed MBol,�
and L� but shows itself directly on the BCV value itself.

6 D ISCUSSION

Choosing a non-standard L� from Table 1 contributes very little (less
than 1 per cent) to the uncertainty of a computed L. Therefore, the
largest error contribution definitely comes from the choice of MBol,�.
This is because there are infinite numbers of MBol and MBol,� pairs
to indicate a single value of L/L� according to equation (11). On the
process of computing BCV values, L/L� and MV are observatinal
quantities coming from DDEBs, so both are fixed values. Therefore,

pre-computed BCV values are affected directly by the choice of
MBol,� with the classical method using equation (11). As in the
case of Casagrande & VandenBerg (2018), who preferred to use
MBol,� = 4.75 rather than the nominal 4.74 mag, all pre-computed
BCV values would be 0.01 mag smaller compared with the standard
BCV. Although Casagrande & VandenBerg (2018) do not state clearly
which L� value they used, we have assumed they are using the
nominal L� as they cite IAU 2015 General Assembly Resolution
B3 for the value of L� used in their equation (3) for obtaining the
bolometric flux received from a star.

In another aspect, MBol,� acts as the arbitrary zero-point for bolo-
metric magnitudes, as Casagrande & VandenBerg (2018) propose
that ‘any value is equally legitimate on the condition that once
chosen, all bolometric corrections are scale accordingly’. That is,
different authors using different MBol,� end up calculating different
BCV values for the same star. Because BCV = MBol − MV, the
zero-point problem shows itself in the produced BCV values. Using
the nominal values of MBol,� and L�, Eker et al. (2020) produced
a standard BCV−Teff relation, which has a maximum BCV value of
BCV (max) = 0.095 mag at Teff = 6897 K. For this study, we have
searched for the value of MBol,�, without changing the nominal value
of L�, which would obtain a BCV−Teff relation with BCV (max) =
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Standardization of stellar luminosities 3589

0.00. We conclude that the answer is MBol,� = 4.645 mag; then, all
computed BC values will be reduced (more negative) to be less than
zero, as listed in Cox (2000). However, such a relation cannot be
definitely considered standard.

The problem with the BCV values of Cox (2000) is not the same
as adopting MBol,� = 4.645 mag in order to make all BCV values
negative. His BCV values are all negative, despite his use of MBol,� =
4.74 mag. In fact, his CBol value is the nearest CBol among the other
sources, which wrongly imply that if the BCV value of Cox (2000) is
used, a very accurate luminosity (0.46 per cent) would be obtained,
even though the computed L, in reality, has a 9 per cent systematic
zero-point error. Most probably, the BCV values of Cox (2000) were
calculated using the following definition of BCV:

BCV = 2.5 log
fV

fBol
+ (CBol − CV)

= 2.5 log

[∫ ∞
0 Sλ(V )fλ dλ∫ ∞

0 fλ dλ

]
+ C2. (13)

Here, C2, the zero-point constant of the BC scale, was assumed
to be arbitrary, so the C2 = 0 value was taken arbitrarily. If C2

is assumed to be zero, all BCV values become unquestionably less
than zero. This is because the visual flux (fV) is never zero but
is less than the bolometric flux (fBol). The logarithm of numbers
between zero and one (fV/fBol) is always negative, which requires
a positive C2, otherwise (if C2 = 0 or C2 < 0) the BC scale
does not have a zero-point; a negative number plus zero or adding
two negative numbers does not produce a zero number. The BC
producers, who assumed that the zero-point constant of the BC scale
is arbitrary, believed that they had the right to make it zero. This way,
they unknowingly carried the zero-point error into the BC value
itself.

Obviously there are two approaches to remove the zero-point
errors. The first approach is that suggested by Casagrande &
VandenBerg (2018) and Torres (2010). This entails being cautious
when calculating the MBol of a star from its MV and BCV. Before
using the BCV on the formula MBol = MV + BCV, check it out and
first learn which MBol,� and L� values were used before producing
the tabulated BCV values or BCV−Teff relation from which the BCV

value was taken. Then, it is safe to proceed in calculating MBol =
MV + BCV in the first step. However, do not use equation (4);
instead, use equation (11) when calculating L. Do not forget to use
the same MBol,� and L� values, which you have searched for in
order to ensure that they are consistent with the BCV value you are
using.

The second approach is suggested in this study. Do not use any
value of BCV haphazardly. Use only standard BCV values from
standard sources. You can use either one of the equations (4) or
(11). It does not matter which, as both are valid for producing the
standard L of stars.

Note that the first approach fails to produce a standard L if one
uses BCV values from sources such as Cox (2000), which may appear
to be using nominal MBol and L� although their BCV values are
not standard because they were produced by assuming C2 = 0.
Concentrating only on the difference between the MBol of a star
and MBol of the Sun, the first approach has no answer as to which L�
was used if the stellar L is taken from published papers where the
published L are usually expressed in solar units.

There are no such problems in the second approach.

6.1 Typical accuracy of L in method 1 (direct method)

The peak of the histogram distribution of the relative radius errors
of DDEBs is 2 per cent, according to Eker et al. (2014). For today’s
accuracy, we can take it as 1 per cent, because many newly published
papers give stellar radii that are even more accurate than ∼1 per cent.
According to Eker et al. (2015), typical temperature accuracy is 2–
3 per cent. The acceptable stellar effective temperature uncertainty
for single stars in general is 1–2.5 per cent, according to Masana, Jordi
& Ribas (2006). Because the direct method uses the effective tem-
peratures of DDEBs, we may find a typical temperature uncertainty
of 2–3 per cent. Consequently, equation (1) indicates that the typical
uncertainty range of stellar L is 8.2–12.2 per cent. On the more accu-
rate side, there could be stars such as the primary component of V505
Per that have �R/R = 1.09 per cent and �Teff/Teff = 0.32 per cent
with corresponding �L/L = 2.53 per cent (Tomasella et al. 2008).
That is, the accuracy of a few percentage levels has already been
achieved by the direct method.

6.2 Typical accuracy of L in method 2 (using MLR)

Among the three methods, the method using the MLR is the least
accurate. This is because the relative uncertainty of L(�L/L) is
determined by the standard deviation (SD) of stellar luminosities on
a log M−log L diagram according to equation (3), where SD could be
different at different mass ranges (Eker et al. 2015, 2018). The most
accurate mass range, which was called the ultra-low-mass domain
covering stellar masses in the range 0.179 < M/M� < 0.45, has
SD = 0.076 mag which corresponds to �L/L = 17.5 per cent. The
most dispersed range, which is called the high-mass domain covering
stellar masses in the range 2.4 < M/M� ≤ 7, has SD = 0.165 mag,
which corresponds to �L/L = 37.99 per cent (Eker et al. 2018).

6.3 Typical accuracy of L in method 3

6.3.1 Typical accuracy of L using a standard BC

Standard stellar luminosities are those calculated by the method using
a pre-determined standard BCV. The most important problem with
this method is that the systematic zero-point errors of non-standard
BCV could be as big as 0.11 mag, corresponding to 10.13 per cent
errors in the predicted stellar luminosities. Such systematic errors
could be removed if and only if standard BCV sources are used. To
make the comparison meaningful, here we assume that the zero-point
error has already been removed or taken to be zero.

A typical accuracy of standard L, therefore, could be calculated
by equations (7) and (8) but taking ZPEV as zero in equation (8).

There could be three contributions to the uncertainty of �MV

according to equation (6). Eker et al. (2020) gives

�MV =
√

(�mV )2 +
(

5 log e
σ�

�

)2
+ (�AV )2 , (14)

where the first term in the square root stands for the error contribution
from the apparent brightness, the second term represents the contri-
bution from stellar parallaxes, and the last term is for the contribution
from interstellar extinctions. Nowadays, apparent magnitude uncer-
tainties are in the order of millimagnitudes. If we assume extinction
errors (�AV) are about 0.01 mag, the parallax errors would definitely
dominate the others; if there is a 10 per cent error on the parallax,
�MV = 0.217 mag. For stars with a 5 per cent error in their parallaxes,
�MV = 0.109 mag. The histogram distribution of the parallaxes for
206 DDEBs (400 stars), from which the standard BCV was extracted
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(Eker et al. 2020), has a peak (median) of 2 per cent. If we take this
as a typical parallax error, then typically �MV = 0.044 mag.

The typical standard error of a BCV value, if it comes from
a standard BCV−Teff curve, would be of the order of 0.011 mag
(Table 2) for the range of temperatures (3000–36 000 K) considered
for main-sequence stars by Eker et al. (2020). The re-arranged data
indicate that a standard error of BCV−Teff is reduced to 0.009 mag
for medium temperatures (5000–10 000 K) while it is 0.59 mag for
lower temperatures, and 0.028 mag for higher temperatures. Inserting
typical �MV = 0.044 mag and a typical standard error of a BC (0.009
mag) into equation (10), a typical �MBol = 0.045 mag is obtained
for the middle temperatures. Inserting this into equation (7), a typical
�L/L becomes 4.14 per cent.

Now, let us assume the extreme case of a star (CM Dra) with a
relative parallax error of 0.050 per cent (Brown et al. 2021). We can
assume no extinction because it is only 14.86 pc away, according to
Gaia eDR3 data. Then, the millimagnitude accuracy of its apparent
brightness would imply �MV = 0.0019 mag. Assuming its BCV

has a standard error of 0.011 mag (last row in Table 2), its standard
luminosity would have an uncertainty of 1.03 per cent. Accuracy in
standard luminosity even increases to 0.82 per cent for the middle
temperatures.

Here, we run into an unexpected case: the secondary method,
using a BC, provides more accurate stellar luminosities than the
direct method. It is too good to be true. Apparently, the problem
must be taking the standard error of a standard BCV−Teff curve as
the standard error of a BC value before computing �MBol.

As Eker et al. (2021) stated, a standard BCV−Teff curve obtained
from BCV and Teff values is similar to MLRs obtained from masses
and luminosities, but not like the Planck curve representing the
spectral energy distribution (SED) of a star. Thus, the standard error
of the MLR (curve) cannot be used as the standard error of an L for a
given M. This is because the scattering of data from the relation is not
only due to observational errors but also due to the different ages and
chemical compositions of the stars on the M−L diagram. Therefore,
�L/L should be calculated directly from the standard deviations, as
described in Section 3.2.

Similarly, one must not use standard errors (column 3 of Table 2)
but use the standard deviations (column 2 of Table 2) when computing
typical errors of MBol. If this is done, 0.215 mag standard deviation
for the total range indicates �L/L = 0.198, and 0.142 mag standard
deviation for the middle temperatures indicates �L/L = 0.131
for the star CM Dra, which has �MV = 0.0019 mag. For a
typical �MV = 0.044 mag, �L/L becomes 20.2 per cent for all
main-sequence temperatures in general, and 13.7 per cent for the
middle temperature only. Therefore, the indirect method of using
standard BC when computing standard stellar luminosities could be
considered better than using the MLR, but not as good as the direct
method.

6.3.2 Typical accuracy of L using a unique BC

Another advantage of the method of computing the standard L of a
star using its BC is when one does not need a pre-computed BCV−Teff

curve or a table giving standard BC values. The unique BC of a star
can be obtained directly from its SED according to equation (13).
Using this equation, however, requires spectroscopic observations
of stars covering a sufficient spectral range, at least more than the
photometric filter, which is used to determine its absolute magnitude
in equation (6). Interstellar reddening is still there to spoil the SED,
but it is always possible to restore the SED, as done by Stassun &

Table 2. Standard deviation of data from the BCV−Teff curve of Eker et al.
(2020) and standard errors of BCV values.

Teff range (K) N SD SD/
√

N

(1) (2) (3)

3000–5000 35 0.349 0.059
5000–10 000 261 0.142 0.009
10 000–36 000 104 0.290 0.028
3000–36 000 400 0.215 0.011

Torres (2016). This might not even be necessary if the star is in the
Local Bubble where interstellar extinction can be ignored.

Assuming that C2 is a well-defined quantity (Eker et al. 2021), the
error of BC in this method depends on how accurately fV/fBol can be
determined. If the quantity fV/fBol is determined at a level of a few
per cent, as there is no error contribution from C2, then according to
equation (5) the accuracy of MBol depends on the accuracy of two
quantities, MV and BCV, which means that the MBol of a star could
be obtained at a low percentage. For example, using typical �MV =
0.044 mag as pointed out in Section 5.3.1, assuming �BCV = 0.03
mag, �MBol is 0.053 mag which means �L/L is 4.9 per cent. If a
star has a very accurate parallax, as CM Dra does, then its absolute
visual magnitude could be as accurate as 0.0019 mag, and if its BC is
calculated with an accuracy of 1 per cent, then its luminosity would
be 0.9 per cent.

We estimate here that the typical accuracy of a standard stellar
luminosity could be of the order of a few per cent if the method uses
the star’s unique BC, which can be computed from its SED. For ideal
cases, it could be as accurate as 1 per cent or even more, depending
upon the accuracies of MV and the unique BC itself. Therefore, using
a unique BC that is computed from its SED is a real advantage over
all other methods, including the direct method.

7 C O N C L U S I O N S

The accuracy of predicted stellar luminosities using the direct method
and two secondary methods has been revised and a new concept,
‘standard stellar luminosity’, has been defined. The luminosities
that were calculated by the direct method from observational radii
and effective temperatures are more accurate than the luminosities
estimated by the secondary methods, which require the MLR or the
pre-computed standard BC. The luminosities produced by the direct
method have been shown to be accurate from about 8.2 per cent to
12.2 per cent, and they could be more accurate by 2–3 per cent.
Stellar luminosities obtained by the direct method are standard by
definition because there can be only one luminosity for a star of given
radius and effective temperature.

The stellar luminosities by the method using the MLR are the least
accurate. Depending upon the mass range where the classical MLR
operates in the form L ∝ Mα , they could be most accurate at about
17.5 per cent (for low-mass stars; 0.179 ≤ M/M� ≤ 0.45) and least
accurate at about 38 per cent (for high-mass stars; 2.4 ≤ M/M� ≤
7). Luminosities calculated using a method with the MLR cannot be
called standard because, first of all, a standard MLR has not been
defined yet, and perhaps it never will be. This is because an MLR in
the form L ∝ Mα is the relation between the typical mass and typical
luminosity of a main-sequence star belonging to a certain region
(e.g. Galactic disc stars in the solar neighbourhood). Moreover, there
is no relation or process providing the true luminosity of a main-
sequence star from its mass except a standard stellar structure and
evolutionary model (not yet defined or agreed upon), which naturally
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would include the chemical composition and age, as with the other
independent parameters.

The stellar luminosities produced by the method using a pre-
determined BC are more accurate than the luminosities computed by
the method of using the MLR, but less accurate than the luminosities
produced by the direct method. It has been shown that the method
that uses a standard BC would provide 13.7 per cent accuracy in
predicted luminosities if the typical accuracy of the absolute visual
magnitude is about ±0.044 mag for main-sequence stars with middle
temperatures of 5000 ≤ Teff ≤ 10 000 K. Depending upon other
factors, such as the accuracy of its parallax, interstellar extinction
and accuracy of the standard BC, the accuracy is either improved
or becomes worse. It has been said that such luminosities are called
standard only if the BC value used in computing it is a standard BC.
Non-standard BCs produce non-standard luminosities.

Note that if a BC value is from a tabulated standard BC table and/or
from a standard BCV−Teff relation, the BC value cannot be called
unique. Tabulated standard BC tables and/or BCV−Teff relations in
the literature do not provide unique BC values because they have
already been produced from pre-computed unique BC values; thus,
they provide only a mean value to represent stars of a given effective
temperature with different ages and chemical compositions.

Therefore, a unique BC is a BC computed according to equation
(13) for a star from its spectrum with sufficient spectral coverage
and resolution. Unlike tabulated tables and/or BCV−Teff relations
where chemical composition and age information has been lost, a
computed fV/fBol from the well-observed spectrum of a star retains
this information; therefore, such computed BC values of stars are
unique. Using unique BC when computing standard luminosity has
the advantage of providing an even more accurate standard L than
the other methods, including the direct method.

Unfortunately, this new method, described in the present study,
has no application yet because it requires C2 (equation 13) for the V
band and other bands, which are not available in the literature (Eker
et al. 2021). Therefore, we encourage the determination of C2 values
for various bands first, and then the determination of fV/fBol from
observed stellar spectra in order to compute a unique BCV value for
each star. Then, unique stellar luminosities could be computed using
equations (4), (5) and (6).
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