Phytochemical constituents, biological activities, and health-promoting effects of the genus Origanum
Citation
Sharifi-Rad, M., Yılmaz, Y. B., Antika, G., Salehi, B., Tumer, T. B., Venil, C. K., … Sharifi-Rad, J. (2021). Phytochemical constituents, biological activities, and health‐promoting effects of the genus Origanum. Phytotherapy Research, 35(1), 95–121. https://doi.org/10.1002/ptr.6785Abstract
Origanum species are mostly distributed around the Mediterranean, Euro-Siberian, and Iran-Siberian regions. Since time immemorial, the genus has popularly been used in Southern Europe, as well as on the American continent as a spice now known all over the world under the name “oregano” or “pizza-spice.” Origanum plants are also employed to prepare bitter tinctures, wines, vermouths, beer, and kvass. The major components of Origanum essential oil are various terpenes, phenols, phenolic acids, and flavonoids with predominant occurrence of carvacrol and thymol (with reasonable amounts of p-cymen and -terpinene) or of terpinene-4-ol, linalool, and sabinene hydrate. Many species of Origanum genus are used to treat kidney, digestive, nervous, and respiratory disorders, spasms, sore throat, diabetes, lean menstruation, hypertension, cold, insomnia, toothache, headache, epilepsy, urinary tract infections, etc. Origanum essential oil showed potent bioactivities owing to its major constituents' carvacrol, thymol, and monoterpenes. Several preclinical studies evidenced its pharmacological potential as antiproliferative or anticancer, antidiabetic, antihyperlipidemic, anti-obesity, renoprotective, antiinflammatory, vasoprotective, cardioprotective, antinociceptive, insecticidal, and hepatoprotective properties. Its nanotechnological applications as a promising pharmaceutical in order to enhance the solubility, physicochemical stability, and the accumulation rate of its essential oils have been investigated. However, Origanum has been reported causing angioedema, perioral dermatitis, allergic reaction, inhibition of platelet aggregation, hypoglycemia, and abortion. Conclusive evidences are still required for its clinical applications against human medical conditions. Toxicity analyses and risk assessment will aid to its safe and efficacious application. In addition, elaborate structure–activity studies are needed to explore the potential use of Origanum-derived phytochemicals as promising drug candidates.