Advanced Search

Show simple item record

dc.contributor.authorBerktaş, Zeynep
dc.contributor.authorOrhan, Elif
dc.contributor.authorUlusoy, Murat
dc.contributor.authorYıldız, Mustafa
dc.contributor.authorAltındal, Şemsettin
dc.date.accessioned2024-01-24T10:35:53Z
dc.date.available2024-01-24T10:35:53Z
dc.date.issued2023en_US
dc.identifier.citationBerktaş, Z., Orhan, E., Ulusoy, M., Yıldız, M., & Altındal, Ş. (2023). Negative Capacitance Behavior at Low Frequencies of Nitrogen-Doped Polyethylenimine-Functionalized Graphene Quantum Dots-Based Structure. ACS Applied Electronic Materials, 5(3), 1804–1811. https://doi.org/10.1021/acsaelm.3c00011en_US
dc.identifier.issn2637-6113
dc.identifier.urihttps://doi.org/10.1021/acsaelm.3c00011
dc.identifier.urihttps://hdl.handle.net/20.500.12428/5384
dc.description.abstractGraphene quantum dots (GQDs), zero-dimensional members of the carbon family, have exceptional mechanical, thermal, and electrical properties. Nevertheless, pure GQDs have many challenges in reaching their full potential in electronic applications. Functionalizing or chemical modification of GQDs adjusts the physical and chemical properties, driving GQDs toward high-performance device applications. Nitrogen (N)-doped polyethylenimine (PEI) functionalized GQDs are capturing the interest of researchers specifically for electronic and photovoltaic applications these days. In this context, we present for the first time capacitance/conductance-voltage (C-V and G/ω-V) measurements of the nitrogen-doped PEI-functionalized GQDs-based structure for use in electronic applications in the frequency range from 1 kHz to 2 MHz at 300 K in this study. Capacitance features, the energy density distribution of surface states (Nss), and the relaxation time (τ) of a nitrogen-doped PEI-functionalized GQDs-based structure have been examined by using the admittance/conductance method. Negative capacitance (NC) behavior mostly exhibited by ferroelectric materials has been observed in the GQDs-based structure at low frequencies, and then it starts to disappear. NC is usually attributed to various surface states/interface traps, series resistance (Rs), and minority carrier injection. The NC phenomenon indicates that an increase in voltage gives rise to a decrease in the charge on the electrodes. The control of interfacial charges in such a heterostructure will be critical for NC devices. The results provide a basis for insights into semiconductor device technology.en_US
dc.language.isoengen_US
dc.publisherAmerican Chemical Societyen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subjectEnergy-dependent profile of surface statesen_US
dc.subjectGraphene quantum dots (GQDs)en_US
dc.subjectNegative capacitanceen_US
dc.subjectNitrogen-doped polyethylenimine (PEI) functionalized GQDsen_US
dc.subjectRelaxation timeen_US
dc.titleNegative Capacitance Behavior at Low Frequencies of Nitrogen-Doped Polyethylenimine-Functionalized Graphene Quantum Dots-Based Structureen_US
dc.typearticleen_US
dc.authorid0000-0001-5833-7499en_US
dc.relation.ispartofACS Applied Electronic Materialsen_US
dc.departmentFakülteler, Fen Fakültesi, Kimya Bölümüen_US
dc.identifier.volume5en_US
dc.identifier.issue3en_US
dc.identifier.startpage1804en_US
dc.identifier.endpage1811en_US
dc.institutionauthorYıldız, Mustafa
dc.identifier.doi10.1021/acsaelm.3c00011en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorwosid-en_US
dc.authorscopusid35567635300en_US
dc.identifier.wosqualityQ2en_US
dc.identifier.wosWOS:000974294100001en_US
dc.identifier.scopus2-s2.0-85150440804en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess