Advanced Search

Show simple item record

dc.contributor.authorMetin, İbrahim Ali
dc.contributor.authorKarasulu, Bahadır
dc.date.accessioned2023-07-24T10:43:56Z
dc.date.available2023-07-24T10:43:56Z
dc.date.issued2021en_US
dc.identifier.citationMetin, İ. A. & Karasulu, B. (2021). İnsanın günlük aktivitelerinin yeni bir veri kümesi: Derin öğrenme tekniklerini kullanarak sınıflandırma performansı için kıyaslama sonuçları. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 36 (2), 759-778 . DOI: 10.17341/gazimmfd.772849en_US
dc.identifier.issn1300-1884 / 1304-4915
dc.identifier.urihttps://doi.org/10.17341/gazimmfd.772849
dc.identifier.urihttps://hdl.handle.net/20.500.12428/4408
dc.description.abstractStudies to classify human activities can contribute to the development of new systems that will facilitate daily life by evaluating the interaction of individuals with their environment. In this study, a novel data set is presented to be used in classifying the activities that individuals perform during the day. First of all, various deep architectural models presented in the study were tested with publicly available datasets well-known in the literature. Afterwards, various classification experiments were carried out by using our novel dataset, which was created with the sensor data collected with the smartphone located onto the belly region of ten volunteer individuals consisting of five males and five females aged between 25 and 55 years. Data of each activity at two different positions were taken, and also, 15 seconds raw data including 4 dynamic and 3 static activities were acquired. With 20 Hz sampling frequency for each activity position, 20 readings are made per signal window in 1 second. Thanks to the software tool developed for the study, various human activities were succesfully classified in experiments by allowing different network parameters and layer selection for the deep learning architectures including recurrent neural network models and convolutional neural network model. The novel dataset contains raw data, as well as, it involves some alternative subsets created with the use of Butterworth filter. As a result of experiments, the classification performance at accuracy rate of 97% to 99% for various activities of individuals was obtained on various datasets. The suitability of using the novel data set in studies on classification and prediction of human activities has been proven.en_US
dc.language.isoturen_US
dc.publisherGazi Üniversitesien_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectİnsan Aktivitelerien_US
dc.subjectTekrarlayan Sinir Ağıen_US
dc.subjectEvrişimli Sinir Ağıen_US
dc.subjectVeri Kümesien_US
dc.subjectBaşarım Değerlendirmeen_US
dc.subjectHuman Activitiesen_US
dc.subjectRecurrent Neural Networken_US
dc.subjectConvolutional Neural Networken_US
dc.subjectDataseten_US
dc.subjectPerformance Evaluationen_US
dc.titleİnsanın günlük aktivitelerinin yeni bir veri kümesi: Derin öğrenme tekniklerini kullanarak sınıflandırma performansı için kıyaslama sonuçlarıen_US
dc.title.alternative[A novel dataset of human daily activities: Its benchmarking results for classification performance via using deep learning techniques]en_US
dc.typearticleen_US
dc.authorid0000-0001-8524-874Xen_US
dc.relation.ispartofGazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisien_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.volume36en_US
dc.identifier.issue2en_US
dc.identifier.startpage759en_US
dc.identifier.endpage777en_US
dc.institutionauthorKarasulu, Bahadır
dc.identifier.doi10.17341/gazimmfd.772849en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorwosidAAW-9151-2020en_US
dc.authorscopusid36450483000en_US
dc.identifier.wosqualityQ4en_US
dc.identifier.wosWOS:000626722500013en_US
dc.identifier.scopus2-s2.0-85104315814en_US
dc.identifier.trdizinid494459en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record