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Abstract: This study investigated the production of poly
(lactic acid) (PLA) nanofibers containing cypress (CUP)
essential oil (EO) via electrospinning. The nanofibers
were produced from polymer solution prepared with dif-
ferent percentages of cypress EO. Cypress EO-containing
PLA nanofibers were characterized and some mechanical
and thermal properties were examined using thermo-
gravimetric analysis, scanning electron microscopy, Fourier-
transform infrared spectroscopy, and dynamic mechanical
analysis. The thermal stability of the nanofibers was
reduced depending on the percentage of the cypress
EO. As the ratio of the cypress EO to polymer matrices
was increased, it was observed that the glassy transition

temperatures of the nanofibers decreased and their flexi-
bility increased. The Tg value was determined to be
53.74°C for the neat PLA nanofiber, while 51.83°C for
the PLA-CUP nanofiber (containing 15% cypress EO).
According to the results of releasing trial, the increased
amount of cypress EO resulted in less cypress EO releasing
from polymer matrices. The nanofibers were observed to
exhibit antibacterial activity against Escherichia coli and
Staphylococcus aureus. The inhibition zone diameter of
the nanofibers containing 10% cypress EO was 20mm
for S. aureus and 16mm for E. coli, while 10mm in the
presence of Kanamycin.

Keywords: poly(lactic acid), cypress essential oil, electro-
spinning, nanofibers, controlled release, antibacterial
activity

1 Introduction

Electrospinning produces nanofibers by electrostatic spin-
ning. This method is performed using a jet of polymer
solution by means of an electric area to produce synthetic
fibers. These fibers typically have different diameters ran-
ging between a few nanometers to a few micrometers
[1–4] that have attracted the interest of the scientific com-
munity [5]. Among the applications where nanofibers are
exploited are nanocatalysis, tissue engineering, protec-
tive textile manufacturing, filtration, biomedical, phar-
macy, optics, electronics, production ofmedical equipment,
and environmental engineering [6–12]. In recent years,
the synthetic additives used in many fields (pharmaceu-
tical, cosmetics, food, agriculture, etc.) have raised
much health-related concerns over their side effects
[13]. Hence, natural alternatives such as essential oils
(EOs), which are classified as “safe” by the United States
Food and Drug Administration (FDA) [14], are needed to
replace them. EOs have been studied by extensive research
to demonstrate their biological properties. Today, different
antibacterial compounds such as EOs [15] are introduced
in PLA matrices to produce new films with antibacterial
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properties. In addition, the research on the improvement
of PLA-based materials with antibacterial properties has
experienced a great boom to extend the shelf life and
to increase food quality [16]. PLA has attracted great
attention due to its production from renewable resources,
biocompatibility, biodegradability, moderate mechanical
performance, and transparency [17]. The addition of EOs
to PLA films has been shown to result in certain physico-
chemical modifications in pristine polymermatrices [18,19].
Mori et al. [19] report that the incorporation of candeia
oil in PLA fibers leads to decreased glassy transition
temperatures (Tg) of 30% (15% EO). Souza et al. have
observed an 18% reduction in the Tg of PLA fibers in
the presence of 20% linalool [18]. The research cited
below reports that natural extracts from bioactive plants
could potentially be used as plasticizers for PLA, which
reflects the mobility of polymer chains and minimizes the
rate of interactions between the chains, also observable
in the case of PLA-EO films [15]. Cypress (Cupressus sem-
pervirens L.) is the only species of Cupressus existing in
Tunisia. In fact, this medicinal plant is an ornamental
tree from the Cupressaceae family. It grows at high alti-
tudes in different geographies, such as North America, the
Mediterranean region, and subtropical Asia. The basic use
of this plant is to protect agricultural fields fromwind [20].

C. sempervirens EOs have antiseptic, aromathera-
peutic, astringent, and anti-inflammatory activities and
antispasmodic, astringent, deodorant, and diuretic effects.
The fruit of this species is known for its ability to cure
diabetes and its antiseptic activity [21–24]. The EO of
C. sempervirens L. exhibits antimicrobial properties, and
so it has potential as a natural antimicrobial agent in
human infectious diseases as well as food preservation.
In addition, the development of natural antimicrobial
agents helps to reduce the negative effects (environ-
mental pollution, resistance) of synthetic chemicals and
drugs [25]. Many secondary plant metabolites have been
shown to exhibit insecticidal properties. It is known that
plants are used to kill or repel insects [26]. The EOs have
harmful, anti-agent, and anti-feeding effects on stored
product insect pests [27]. The richness of the C. semper-
virens L. EOs in α-pinene has been confirmed by several
authors in different countries, such as Iran (30%) [34],
Algeria (44.9%) [35], Morocco (60%) [36], Italy (31%)
[37], Egypt (6.9%) [38], and Saudi Arabia (48.6%) [39].

This study aims to produce biopolymer nanofiber
matrices with improved thermal, mechanic, and anti-
bacterial properties by introducing natural contents into
these matrices. Therefore, cypress EO as an active natural
substance and PLA as a biopolymer matrix have been
chosen. The different amounts of cypress EO were added

into PLA matrices. The prepared nanofibers were charac-
terized by considering some of their properties, such as
thermal and mechanical properties, antibacterial proper-
ties, and releasing behaviors.

2 Materials and methods

2.1 Materials

Poly(lactic acid) (PLA) was purchased from Natureworks
LLC (Nebraska, USA). Dichloromethane (DCM), N,N-
dimethylformamide (DMF), and tetrahydrofuran (THF)
were used as solvents. The cypress EO extracted by the
hydrodistillation method [28] was used as the natural
antibacterial agent. The GC-MS analyses [64] revealed
the predominant compounds of this EO to be α-pinene
(42%), δ-3-carene (21.26%), limonene (5.96%), and α-ter-
pinolene (4.86%).

2.2 Preparation of the EO-containing PLA
(PLA-CUP) nanofibers

The formulation was prepared for electrospinning as
modified from previous studies [29–31], which shows
the capacity of the EO incorporation in solvents for electro-
spinning. PLA (0.4 g) was dissolved in a mixture of
solvents (3 mL of dichloromethane, 1 mL of dimethyl-
formamide, and 1mL of tetrahydrofuran) with magnetic
stirring at room temperature at 2 h. The cypress oils were
added to the PLA solution with different weight percen-
tages, i.e., 7.5, 10, and 15% (w/w), and then stirred for 1 h.
The prepared polymer solutions were introduced in a
5 mL syringe. The injection of the solution was carried
out with a constant flow of 1.5 mL/h. To electrospun the
solutions, a voltage of 15 kV and a separation distance of
15 cm was employed.

2.3 Characterization of the PLA-CUP
nanofibers

Poly(lactic acid) nanofibers can be characterized by con-
sidering some mechanical and thermal properties using
thermogravimetric analysis (TGA), scanning electron
microscopy (SEM), Fourier-transform infrared spectroscopy
(FTIR), and dynamic mechanical analysis (DMA). In this
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study, the characterization methods listed below were
used for the characterization of the PLA-CUP nanofibers.

2.3.1 Scanning electron microscopy

The morphology of the nanofibers containing neat PLA
and PLA-CUP nanofibers was characterized using an SEM
(JEOL JSM-7100-F) with 15 kV working voltage as modi-
fied from Cesur et al. [61] and Yang et al. [63].

2.3.2 Fourier-transform infrared spectral analysis

FTIR is a qualitative and quantitative analytical tech-
nique for identifying functional groups that appear as
an absorption band. It is used to subject a molecule to
IR radiation. The IR spectra of the neat PLA and PLA-CUP
nanofibers, ranging from 600 to 4,000 cm−1, were recorded
using the PerkinElmer’s FTIR “spectrum one”model, con-
trolled by a computer equipped with a processing software
program featuring a resolution of 2 cm−1 [62].

2.3.3 Thermogravimetric analysis

TGA is a technique of thermal analysis adopted to mea-
sure the change in the mass of a sample as a function of
time at a temperature or at a specified temperature. The
analysis was performed with PerkinElmer TGA 8000. The
thermal stabilities of the PLA and PLA-CUP nanofibers
were analyzed according to the modified version of the
procedure in Yang et al. [63]. A 3mg sample test was
conducted in a nitrogen atmosphere at a heating rate of
10°C/min at 30–550°C.

2.3.4 Dynamic mechanical analysis

DMA of the PLA and PLA-CUP nanofibers containing EO
was performed on a PerkinElmer DMA 8000 by employing
the modified process available in Yang et al. [63]. The
samples were heated from 30 to 100°C at 1 Hz at a heating
rate of 3°C/min.

2.4 In-vitro release studies

The cypress EO content of the various electrospun sam-
ples was calculated according to a calibration curve. This

calibration curve was prepared by dissolving the EOs in
ethanol, covering a broad range of their concentrations
(2.5–20 ppm), and then applying a linear regression (R2 =
0.9994). Next, the solution absorbance was examined
at 203.8 nm for the cypress EOs. In a microtube, 20mg
of the nanofibers at different obtained concentrations
was dissolved in 5 mL of 60% phosphate-buffered saline
(PBS) (pH = 7.4) + 40% ethanol [32] and incubated at
room temperature. At well-determined time intervals,
the supernatant of each sample was measured by a UV-
visible spectrophotometer.

The ratio of the PBS and ethanol was 60:40. About
600mL of PBS and 400mL of absolute ethanol were
mixed in a volumetric flask of 1 L. The PBS was prepared
by dissolving 8 g of NaCl, 2.0 g of KCl, 14.4 g of Na2HPO4,
and 2.4 g of KH2PO4 in 800mL of distilled water. After the
solution was mixed thoroughly, the pH was regulated
to 7.4.

The cumulative amount of the cypress EO released
from the PLA-CUP nanofibers was determined by mea-
suring the cypress EO concentrations (ppm) in the release
medium at specific time intervals using the UV-visible
spectrophotometerat 208.3 nmandconverted to the released
amount (µg) considering the volume of the release medium
(mL). The cumulative percentage of the released cypress EO
was represented by the formula (1):

∑= ×
=

M
M

Cumulative release percentage 100
t

t
t

0 0
(1)

Mt: Cumulative amount of the cypress EO released at
each sampling point. M0: Initial weight of the cypress
EO loaded in the sample.

2.5 Antibacterial activities of the nanofibers

The antibacterial activity of the nanofiberswas qualitatively
tested by the disc diffusion method against the Gram (+)
strains S. aureus ATCC 25923 and Enterococcus faecalis
ATCC 29212 and the Gram (−) strains Pseudomonas aeru-
ginosa PA01 and E. coli ATCC 25922. Initially, 100 μL of
the bacterial suspension (0.5 McFarland turbidity) was
spread on the Luria Bertani Agar (LBA) plate. Then, the
nanofibers (diameter = 15 mm) were placed on the LBA
plate and incubated at 37°C for 24 h. Finally, the dia-
meters of the inhibition zones around the nanofibers
were measured [33].

Ethical approval: The conducted research is not related to
either human or animal use.
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3 Results and discussion

3.1 SEM analysis

The structure of the PLA-CUP nanofibers (10%) was ana-
lyzed by SEM. Using the SEMobservations, an examination

of the modifications in the morphology of the PLA nano-
fibers was performed after introducing the cypress EO.
Usually, the surface morphology of a neat PLA is smooth
and homogeneous and contains no pores and cracks [40].
According to the SEM images of theneat PLAandPLA-CUP
nanofibers in Figure 1, the diameters of the nanofibers

Figure 1: SEM images of the nanofibers (a) neat PLA, (b–f) PLA-CUP nanofibers.
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ranged between 111 and 1,061 nm. The average diameter of
the neat PLA nanofibers was 607 ± 197 nm and the PLA-
CUP was 400 ± 288 nm. As these results indicated, the
diameters of the neat PLA nanofibers were larger than
those of EO-loaded PLA nanofibers [40].

3.2 FTIR analysis

According to the FTIR spectra of the neat PLA nanofibers
in Figure 2, the peaks at 2.990 and 2.940 cm−1 were attrib-
uted to –CH– stretching, the peak at 1.760 cm−1 to C]O
carbonyl group, the peaks at 1.180 and 1.080 cm−1 to
–C–O– stretching, and the peak at 860 cm−1 to –C–COO
stretching [42]. The FTIR spectra of PLA-CUP showed the
presence of the functional groups’ characteristics of this
type of nanofiber. The band of high-intensity fine at
around 3.350 cm−1, which we could attribute to the free
OH vibrators, was observed in the FTIR graph. The exis-
tence of absorption bands attributed to the two modes of
vibration of symmetrical elongation at around 2.980 cm−1

of the CH2 and asymmetrical at around 2.920 cm−1 of CH3

groups. The two bands of the group –CH at around 1.470
and 1.380 cm−1 were also observed in the FTIR graph [43].
The band at 765 cm−1 represents the alkene bond of C]C.

3.3 TGA of the neat PLA and PLA-CUP (15%)
nanofibers

According to Figure 3, the neat PLA nanofiber showed a
single-step process decomposition [44]. The incorpora-
tion of EO into the polymer matrix resulted in additional
degradation maximums. These additional peaks, which

were observed at around 150 and 230°C, belonged to the
EO in the matrix, and these peaks corresponded to the
degradation and evaporation of EO. The weight loss at
around 70°C in the derivative TGA graph suggests the
evaporation of the adsorbed water. The maximum degra-
dation rate of the PLA nanofiber is 337.90°C. This peak
shifted to 345.06°C because of the incorporation of the
EO.The thermal stability of thePLAnanofiberwas improved
with the added EO [44]. Previous works have shown that
the incorporation of EO has resulted in decreased thermal
stability of polymer matrices [58–60].

3.4 Dynamic mechanical analysis

As clear from Figure 4, the Tg value was 53.74°C for the
neat PLA nanofiber, while the Tg value was 51.83°C for the
PLA-CUP nanofiber (containing 15% EO). The PLA-CUP
nanofibers exhibited a lower Tg than the neat polymer for
both samples. The insertion of EO into the PLA matrix
leads to decreased Tg and increased elasticity [15]. The
change range of Tg for PLA mats has been reported
between 17 and 35°C for low molecular weight molecules,
such as citrates, terpenes, and oil [45–47]. The introduc-
tion of fillers potentially acting as plasticizers increase
polymer chain mobility and polymer-free volume and
decreases Tg of polymer mats [45,48,49]. It can also be
observed that the elasticity of the PLA nanofiber mats
has been increased by adding EOs. The EOs behave as
plasticizers, which leads to increased free volume and
decreased interactions between polymer chains. These
changes lead to improved chain mobility and flexibility
[49]. Zhang et al. [47] reported that the EOs work as plas-
ticizers for PLA, lowering the glassy transition tempera-
ture of EO-containing composite fibers by up to 60% and
increasing elongation-at-break and tensile strength up to
12 times.Figure 2: FT-IR spectrum of neat PLA and PLA-CUP nanofibers.

Figure 3: TGA curves of neat PLA and PLA-CUP (% 15) nanofibers.

800  Hayfa Argui et al.



3.5 In-vitro release studies

The releasing behavior of the PLA-CUP nanofibers is
shown in Figure 5. The PLA-CUP nanofibers were released
in about 70 h. In 7 h, burst releases were observed for
the PLA-CUP nanofibers. According to the results, the
lowest percentage of EO (7.5%) in the nanofibers exhibited
the best releasing behavior and the amount of releasing
decreased as the EO percentage increased. This ratio
corresponded to approximately 60% for the nanofibers
containing 10% EO and to around 50% for the nanofibers
containing 15% EO. About 10% EO-containing PLA nano-
fibers have been reported to release approximately 50%
more EO than 15% EO-containing PLA nanofibers [50].

3.6 Antibacterial activities of the PLA-CUP
nanofibers

To the authors’ best knowledge, no previous research has
been reported on the antibacterial activities of PLA-CUP
nanofibers. The antibacterial activities of the PLA-CUP

Figure 4: Thermal properties (a) Tan Delta, (b) Loss Modukus,
(c) Storage Modulus of the neat PLA and the 15% EO added PLA-CUP
nanofibers.

Figure 5: Releasing behavior of the different amount (7.5, 10, and
15%) of cypress EO loaded.
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nanofibers at different concentrations (7.5, 10, and 15%)
against four bacterial strains were tested by the agar dif-
fusion method. The diameters of the inhibition zones
were found to have varied depending on the tested bac-
terial strain (Table 1).

The study of the neat PLA nanofibers resulted in no
antimicrobial property against the researched strains.
These results were confirmed by other studies [51–55],
which have shown no antimicrobial property for the
neat PLA film [51–55]. It may be thought that the hydro-
phobic nature of pure PLA has limited its antimicrobial
property [56]. The results of the current work showed that
the PLA-CUP nanofibers exhibited a moderate inhibitory
activity at 10% EO concentration against the two tested
strains (S. aureus 20 ± 1.1 mm and E. coli 16 ± 1.2 mm). At
this concentration, E. coli is a Gram (−) bacterium, which
was sensitive to the PLA-CUP nanofibers. At 15% EO
concentration, the PLA-CUP nanofibers demonstrated a
moderate inhibitory activity against the tested strains
(S. aureus 22 ± 2.1 mm and E. coli 25 ± 2.2 mm). S. aureus
is a Gram (+) bacterium, which was sensitive to the PLA-
CUP nanofibers. At 7.5% EO concentration, the PLA-CUP
nanofibers exert no inhibitory effect on all the four
tested strains. C. sempervirens L. EO mainly contains
monoterpene hydrocarbons (91.98%), incorporating α-
pinene as the main constituent (42%) and δ-3-carene
(21.26%) as the second most prominent constituent. In
fact, cypress EO has been reported to show antibacterial
activity due to the α-pinene therein. This oil has antiox-
idant and antiseptic properties that may account for its
antibacterial activity [57].

4 Conclusion

The chemical analyses [64] revealed that cypress EO con-
tains 22 components. The components with the highest
ratios were α-pinene (42%), δ-3-carene (21.26%), limonene
(5.96%), and α-terpinolene (4.86%). The antibacterial

effects of cypress EO may have originated from these com-
ponents. The thermal stability of the mats was determined
tohavedecreasedwith the addedcypressEO. In the cypress
EO-containing, PLA nanofiber mats were observed to
undergo a two-step decomposition process. The Tg value
decreased as the elasticity of the final mats was increased
by adding cypress EO to the polymer matrices. The cypress
EO-loadednanofibers showed antibacterial activity against
Gram (+) (S. aureus) and Gram (−) bacterium (E. coli). The
inhibition zone diameter of the nanofibers contained 10%
cypress oil was 20mm for S. aureus and 16mm for E. coli,
while it was 10mm for Kanamycin. The “good” releasing
behavior of the 7.5% EO-containing nanofibers suggests
that the active ingredient canmake a significant contribu-
tion to drug design by reducing manufacturing costs.
Besides, the reduced release with an increase in the
amount of EO additives may offer benefits for long-term
controlled drug release. As a result of the present study, it
was understood that cypress EO can act as a plasticizer
when inserted into a PLAmatrix. All in all, cypress EO can
be regarded as a natural antibacterial agent besides its
capacity to increase the flexibility of PLA nanofibers.
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Table 1: The antibacterial activity of the cypress EO-loaded nanofibers

Inhibition zone diameters (mm)

(Nanofibers 1 cm2) S. aureus E. faecalis E. coli P. aeruginosa

Cypress EO (7.5%) * * * *
Cypress EO (10%) 20 ± 1.1 * 16 ± 1.2 *
Cypress EO (15%) 22 ± 2.1 * 25 ± 2.2 *
Kanamycin (5 µg) 10 ± 1.1 9 ± 0.7 11 ± 1.1 9 ± 0.7

*: No inhibition.
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