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In recent years, there has been a highly competitive pressure on industrial production. To keep ahead of the competition,
emerging technologies must be developed and incorporated. Automated visual inspection systems, which improve the over-
all mass production quantity and quality in lines, are crucial. The modifications of the inspection system involve excessive
time and money costs. Therefore, these systems should be flexible in terms of fulfilling the changing requirements of high
capacity production support. A coherent defect detection model as a primary application to be used in a real-time intelligent
visual surface inspection system is proposed in this paper. The method utilizes a new approach consisting of nested au-
toencoders trained with defect-free and defect injected samples to detect defects. Making use of two nested autoencoders,
the proposed approach shows great performance in eliminating defects. The first autoencoder is used essentially for feature
extraction and reconstructing the image from these features. The second one is employed to identify and fix defects in the
feature code. Defects are detected by thresholding the difference between decoded feature code outputs of the first and the
second autoencoder. The proposed model has a 96% detection rate and a relatively good segmentation performance while
being able to inspect fabrics driven at high speeds.
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1. Introduction

The globalization of industry is gaining momentum and its
scope of influence is increasing. Renovating the machine
and information technology infrastructure for a company
can be a solution as long as the risk to reward ratio is
remarkable. Companies rarely endorse such changes. On
the other hand, expectations of target customers regarding
product quality and quantity must be met to keep a
competitive edge in this race. Thus, having a leading-edge
product inspection maintains its importance. Automated
visual inspection systems, one of the key technologies
in industrial manufacturing or production, lifts the total
production quantity and quality compared with those
obtained with traditional inspection methods.
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Visual inspection can be described as examining
industrial products by acquiring image data of different
modalities. Certain standards, specifications or
requirements should be considered in doing so. Color,
area/volume defects, texture printing offsets, thread/knit
defects are some of the flaws or defects often checked
during the inspection. Exemplifying the principles of
visual inspection systems (VISs) is cumbersome since
these systems differ widely in the type of products and
defects elaborated. Recently, intelligent automated visual
systems have been flourishing to be used in the product
lines, and they share a general workflow to pin down the
defects. This is the category of VISs examined in this
paper.

Essentially the appointed goal for a VIS is to
determine whether or not a product is defective and
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to report defects if there are any. Da Costa et al.
(2020) utilized deep residual neural network (ResNet50)
classifiers to sort defective products. Wei et al.
(2019) proposed the use of compressive sensing for the
augmentation of the training samples, which enables
training convolutional neural networks (CNNs) with a
satisfying performance from a small number of samples.
Zhang et al. (2019) proposed an on-line detection system
that can capture multiple images from different angles to
detect defects.

The objective of a VIS can be appointed solely as
the classification of a product as either defective or not,
and this can be worthwhile in some applications. On
the other hand, developing an inspection technology now
demands the extraction of detailed reports by getting
involved with the depiction and localization of the defects.
The number, location, size, and type of defects determine
the quality of the product. Generally, if the quality of
a product cannot be brought to a certain level, then it
will be priced accordingly. Furthermore, information
about defects can also be used to detect and prevent
malfunctioning processes in the production line. Hence,
a VIS should be able to extract comprehensive data from
defects.

To segment out defects, Li et al. (2019b)
introduced a new texture-feature description operator,
the multi-directional binary pattern (MDBP). The
operator was reported to be detecting defects using a
threshold obtained from the similarity between the feature
matrices extracted from non-defective and defective
fabric images. Also, Li et al. (2019a) proposed separating
images into defective and background regions using
low-rank decomposition and efficient second-order
orientation-aware descriptors. Yu et al. (2018) presented
a coarse-to-fine model to find rail surface defects, and
Wang et al. (2018) proposed a guidance template-based
method. A fully convolutional neural network was
proposed to detect and identify defects on different types
of surfaces: wooden surfaces (He et al., 2019; 2020), tires
(Wang et al., 2019b) and fabrics (Ouyang et al., 2019).
Although these methods perform well, they essentially
suffer from the use of a limited number of samples as the
input.

In the production line, products in focus can be
replaced by structurally different new ones. Hence,
the VIS should be applicable, rapidly and conveniently
adjustable to these new products. Lizarraga-Morales
et al. (2019) proposed rough-set-based rules involving
the extraction of binary features from both defective and
defect-free images and in this wise detection of defects on
textiles with certain patterns. For defect detection, Li et al.
(2016) presented Fisher criterion based stacked denoising
autoencoders trained with limited defect-free samples.
Luo et al. (2019) proposed the selectively dominant local
binary patterns framework that could be applied to a

variety of manufacturing industries. Wang et al. (2019a)
presented an entity sparsity pursuit to identify rare defects
that violate the low-rank structure of the image. Alipour
and Harris (2020) proposed improving the robustness of
material-specific deep learning models for crack detection
to be used for various materials. The most significant
shortcoming of these methods is that a large data set is
always required to train or adjust these models.

The systems in industrial production are designed
to minimize defects, thus obtaining sufficiently
defective images of the products for training becomes
a time-consuming task. Recently, researchers have
proposed systems that do not need defective data
to develop all-purpose intelligent VISs. Lian et al.
(2019) proposed an adversarial network to generate
numerous exaggerated samples on the defects to improve
the performance of the classifiers. Sun et al. (2019)
used transfer learning with adaptive multiscale image
collection. To detect defects without negative samples, Jia
et al. (2020) proposed splitting the image into lattices and
measuring image similarity with respect to the template
statistics learned from defect-free samples. Similarly,
Kang and Zhang (2019) presented the Elo-rating
algorithm and utilized it on the integral image to detect
defects in fabrics. Similar efforts for the same objective
have been undertaken in several other research areas
involving unsupervised deep learning methods such
as the stacked de-noising convolutional auto-encoder
(Xie et al., 2019) or the deep convolutional generative
adversarial network (Hu et al., 2019).

The methods mentioned above deserve appreciation,
yet a significant amount of human intervention to
keep the system running remains a necessity. Yang
et al. (2019) addressed this problem and proposed
a fast and accurate multiscale feature-clustering-based
convolutional autoencoder method using only defect-free
samples; the detection of defects with high accuracy
with very little human intervention was achieved.
Similarly, Bergmann et al. (2019) advised the use
of unsupervised-learning-based convolutional denoising
autoencoder networks consisting of different Gaussian
pyramid levels. The capabilities of these methods are
the state of the art, yet training times, the size of the
presented networks and the data sets that were used to test
performance were kept fairly simple.

The main thrust of this paper is establishing a defect
detection model to be used in a real-time intelligent visual
surface inspection system. The system can detect defects
that are scattered on repetitive textures patterns with high
accuracy, and the method requires very low training time
as well as low memory. The proposed approach does not
require defective samples for the training phase, and it can
be used in a variety of different materials.
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Fig. 1. Overall architecture of the proposed nested AE model.

2. Proposed approach

2.1. Network architecture of the nested autoencoder.
Traditionally, neural networks are trained to detect and
segment defective areas of images using labeled images of
both defective and normal samples. However, creating a
balanced training set that includes numerous defect types
is a challenging task as defects are usually very rare.
Taking advantage of unsupervised learning approaches,
which do not require labeled data, neural networks can
be trained to segment defects without defective samples.

Autoencoders (AEs) are the most widely used
architectures for unsupervised learning tasks. They can
reconstruct an image without the manipulation of a user
or the need for label. An AE forces the data through a
bottleneck and then reconstructs, the original data from
the bottleneck representation which is also referred to as
code. Standard fully connected AEs perform poorly on
images and the size of the neural network for acceptable
performance has to be quite large. This results in a poor
and tedious training phase.

Convolutional autoencoders (CAEs), on the other
hand, can capture local spatial features by a series of
filters called kernels and, with a large number of layers,
extract high-level features from an image. An encoder,
which houses the generation of the bottleneck effect and
produces a feature representation as the result, can be
designed using the convolution and pooling layer. The
decoder, which reconstructs the image from the feature
representation, can be built using the upsampling and
convolution layers.

It is assumed that, by training convolutional

autoencoders on defect-free samples, the CAE gains
the ability to extract only features related to defect-free
samples. Therefore, when a defect is present on the tested
image, the CAE will not be able to regenerated the same
defect at its output. Taking advantage of this property,
defects can be detected and segmented using the residuals
of the input and output image. However, a major problem
with this assumption is that AEs tend to “peek” at the input
image, thus generating an image that is more similar to the
defective input one than its defect-free equivalent (Bhattad
et al., 2018). This peeking behavior, which is a result of
features that AEs learn during training, might also be able
to represent defective areas of input images.

A simple way to overcome this problem is the use of
a narrower bottleneck. This provides better reconstruction
performance, yet presents fewer reconstruction details.
Another method is to train CAEs to exploit randomly
applied masks similar to denoising AEs. However, this
method is computationally expensive in application.

In this paper, we propose a nested AE architecture
for real-time defect detection which is capable of turning
defective images into their defect-free counterparts and
segmenting out the texture defects seen in inspected
images. It also provides a low run time and training time
as well as low complexity. The proposed architecture
suggests that two nested AEs can overcome the cheating
habits of AEs. The first one is composed of CNNs
and extracts useful features for the reconstruction of the
image, and it will be referred to as the feature extraction
AE.

The encoding module of the feature extraction AE,
E, first transforms the defective input image X̃ to
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Fig. 2. Training steps of the proposed nested AE defect detection scheme.

the feature space, where the image is encoded into a
one-dimensional feature vector C. The encoder module
can be defined as a nonlinear mapping function

E : X → C,

C = E(X),

C = ϕE(WE ◦X + bE),

(1)

where WE , bE and ϕE represent kernels, bias vectors and
the convolution operation, respectively.

Instead of reconstructing a defect-free image, the
second AE, which can be referred to as the prediction
AE, P , predicts defect-free counterparts of the extracted
feature vector. Predicting a defect-free image feature
vector C

′
from the defective feature vector C̃

′
is much

more effective and robust since the AE cannot distort
the response using the input image or the feature vector.
The reconstruction module can be defined as a nonlinear
mapping function

C
′
= R(C̃

′
),

C
′
= ϕR(WRC̃

′
+ bR),

(2)

where WR, bR and ϕR represent kernels, bias vectors and
the convolution operation, respectively.

Finally, the decoder module of the feature extraction
AE generates two images from predicted defect-free C

′

and input image feature vectors C̃
′
. As a result, a

predicted flawless image Xc and the reconstructed image
X

′
are obtained. The decoder module can be defined as a

nonlinear mapping function

X
′
= D(C

′
),

X
′
= ϕD(WD ◦ C ′

+ bD),

X̃
′
= D(C̃

′
),

X̃
′
= ϕD(WD ◦ C̃ ′

+ bD),

(3)

where WD , bD and ϕD represent kernels, bias vectors and
convolution operation, respectively.

The difference between the predicted defect-free
image X

′
and the reconstructed input image X̃

′
is

computed and then the absolute value of the difference
is used to obtain an error map.

EM = |X ′ − X̃
′ |. (4)

These two images are used instead of the original image
X̃ in order to remove the unmodeled detail from the error
map.

A segmented image S is obtained after flaws
are detected and segmented out using a fixed global
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threshold T

S(x, y) =

{
0 ifEM(x, y) ≥ T,

1 otherwise.
(5)

The overall architecture of the proposed model is given in
Fig. 1.

2.2. Training nested AE for defect detection. The
design of a real-time inspection system can be a long
and arduous task. The execution time of the algorithms
must be precise and very low to meet the production
speed demands. A defect detection algorithm must
be as simple as possible while ensuring high detection
rates. Furthermore, the algorithm must be able to process
multiple split images in parallel without paying an extra
bit of attention to its context. In that, training input
images X should be fragmented into the dimensions of
the smallest repetitive pattern. In the proposed defect
detection scheme, training and testing are carried out
without any delays in processing the fragmented images.
Our assumption is that the lighting is optimal and the
image acquisition system is stable.

To train the nested AE with only a few good samples,
fragmented images XT are intentionally injected with
defects. This step is similar to the corruption step of
denoising the AE, but instead of random noise, the images
are injected with artificial defects such as randomly
generated lines, solid and translucent circles. These
artificial defects have been chosen empirically to train the
network, and they carry characteristics similar to the ones
of the defects encountered in real-life systems.

The proposed architecture is trained in two phases,
and training the feature extraction AE is the first phase.
This AE projects the images to be inspected to a
one-dimensional invertible feature space. To this end,
both good fabric XT and the defect injected samples X̃T

are concatenated and used to train the feature extraction
AE. Training is considered successful when the smallest
texture fibers and minimum size defects are accurately
modeled in the reconstructed images. The feature
extraction AE is trained according to the mean square
error

Lout =
1

N

N∑
i=1

∥∥XT i −XT

′
i

∥∥2, (6)

where N is the batch size.
In the second phase, the prediction AE is trained to

predict the corresponding defect-free feature vector from
the input. After the successful training of the feature
extraction AE, good fabric samples and defect injected
samples are passed through the encoder of the outer
AE, resulting in defective C̃T and their corresponding
good feature vectors CT . Defective feature vectors and
defect-free vectors are concatenated as Cin = C̃T +CT to

train the prediction AE, with the target vector being their
defect-free counterparts as the outputs Cout = CT + CT .
The prediction AE is also trained using the mean square
error as the metric

Lpr =
1

N

N∑
i=1

∥∥Cin − C
′
out

∥∥2, (7)

where C
′
out is the predicted output.

The training scheme steps are given in Fig. 2.

2.3. Testing the nested AE. Once the images to be
detected are split into patches of convenient sizes, for each
patch the corresponding feature vector is extracted with
the help of the encoder module of the feature extraction
AE. A feature vector is then fed into the prediction AE to
get its counterpart defect-free feature vector. These two
vectors are then converted back to the image domain by
the decoder module of the feature extraction AE. Finally,
two images are obtained as

X̃
′
T = D(E(X̃T )),

Xc
T = D(P (E(X̃T ))),

(8)

where X̃T is the image to be inspected, X̃
′
T is the

reconstructed image and XT is the defect-free image.
An error map is generated with a simple difference

operation between these two images. The error map
is passed through a simple average filter for better
visualization of the regions with errors. The threshold
level, used to detect and segment flaws from the EM, is
chosen as the maximum value of the error maps calculated
from good fabric samples.

2.4. Experimental results. In this section, the
proposed nested AE structure is tested on a challenging
data set and the performance is presented and discussed.
Since the method is designed to be used in defect detection
systems, defect detection performance will be evaluated
considering the rates more than the segmentation success.
Other performance criteria such as the speed, size, and
complexity of the algorithm will be discussed.

We tested our method on the MVTec anomaly
detection data set, which is a quite complex and
challenging dataset for defect inspection when compared
with the ones in the literature (MVTEC AD, 2019). The
data set consists of 3629 images from 15 categories
for training and verification, and 1725 images from
15 categories for testing. The proposed method has
been tested on the carpet image set, which is indeed a
textile product, and contains 279 samples for training
and 117 samples for testing. The training set consists
of only defect-free images. The test set consists of
flawless images coming along with various types of
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Fig. 3. Test results of the proposed nested AE model for five dif-
ferent defect types. Top to bottom are the original defec-
tive samples, ground-truth regions, reconstructed images
and predicted defect-free images, respectively.

defects such as color, cut, hole, metal contamination, and
thread. Synthetic defects similar to the abnormalities
that may arise in real industrial inspection scenarios were
superposed onto the test images. All images have a spatial
resolution of 1024× 1024 pixels. The images are reported
to be acquired under optimal lighting conditions. For the
derived defective image regions, there are accompanying
pixel-level segmented patch images, and these can be
treated as the ground truth for the defects.

For a comprehensive defect detection task, both
the shape and size of the defect must be accurately
determined. The performance of the method is evaluated
with respect to these two attributes of the defects.
Accuracy, sensitivity, specificity criteria will be used
to discuss defect detection performance. Test results
will be labeled as true-positive (TP), false-positive (FP),
true-negative (TN) and false-negative (FN). If a defective
image is classified as defective, then the test result is TP;
however, if the defective image is classified as defect-free
then the test result is FN. Similarly, if a defect-free image
is classified as defective, then the test result is FP and also
if a defect-free image is classified as defect-free than the
test result is TN. The expressions for accuracy, sensitivity,
specificity terms can be stated as follows:

accuracy =
TP + TN

TP + TN + FP + FN
,

sensitivity =
TP

TP + FN
,

specificity =
TN

TN + FP
.

(9)

Table 1. Accuracy (Acc.), sensitivity (Sens.) and specificity
(Spec.) measures calculated for each defect type.

Defect No. of No. of Acc. Sens. Spec.

types images faults

Color 19 21 0.7619 0.7619 –

Cut 17 18 1.0000 1.0000 –

Good 28 28 1.0000 – 0.0000

Hole 17 17 0.8500 1.0000 1.0000

Metal
Cont.

17 18 1.0000 1.0000 –

Thread 19 20 1.0000 1.0000 –

All 117 122 0.9660 0.9468 0.9677

Accuracy, sensitivity and specificity measures
calculated for each defect type are given in Table 1.
Accuracy is the ability to distinguish defective and good
samples. The proposed method is able to mark 96% of all
cases correctly. It has a low accuracy of 76% in color
defects, which is essentially because we experimented
on monochrome images for the sake of computation
time, and the network size and the color characteristics
of the samples were ignored. Consequently, color
defects that are originally present can be indistinguishable
in monochrome image use. Sensitivity measures the
ability to differentiate defective samples correctly, just
like specificity measures the ability to differentiate good
samples.

In order to evaluate the defective region segmentation
performance of the method, the relative per-region overlap
of the segmentation set Ss and ground truth set Sg

is calculated using the Jaccard index, which is the
intersection between two sets divided by their union,

LC =
|Ss ∩ Sg|
|Ss ∪ Sg| . (10)

Defect detection and defective region segmentation
performance of the proposed method is compared with the
results of commonly used methods taken from the work
of Bergmann et al. (2019) and the results are presented in
Table 2. The reconstructed images are given in Fig. 3 to
exemplify the performance of these methods for different
defect types.

Even when tested on a challenging data set, the
proposed method is able to detect and segment defective
regions successfully. The segmentation success depends
on the size of the defect dealt with. Segmentation of
thin or tiny defects is a demanding task. One reason
for this is the minimum threshold, which results in zero
false positives in training images. Altering the number
of pixels fit inside the anticipated minimum defect size
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Table 2. Detection rates and segmentation (Seg.) performance comparison of the proposed method with other commonly used ap-
proaches such as structural similarity autoencoders, L2 autoencoders, anomaly detection with generative adversarial networks,
CNN feature dictionary and texture inspection. Top to bottom are the ratio of correctly classified normal samples, correctly
classified defective samples and overall segmentation performance values, respectively.

Per. Ours
AE

(SSIM)

AE

(L2)
AnoGAN

CNN

feature

dictionary

Texture

inspection

Detection

rates

0.97 0.43 0.57 0.82 0.89 0.57

0.95 0.97 0.42 0.16 0.36 0.61

Seg. 0.78 0.69 0.38 0.34 0.20 0.29

by increasing the resolution of the image can be still an
expensive way out.

A visual comparison of standard AE based methods
and the proposed method is provided in Fig. 4. Vanilla
AEs and denoising AEs are trained to have the same
layers as the external AE. Their reconstruction capabilities
have been presented to be inefficient by merely evaluating
the test results. As mentioned before, the strong reason
why both the denoising AE and the vanilla AE fail to
reconstruct a defect-free image is their direct connection
to the input image causing AEs to cheat. The proposed
method overcomes their incompetence by employing an
inner AE, which also has the advantage of reconstructing
much smaller data. Our method can reconstruct a
defect-free sample even in the most challenging cases.

The proposed method is trained on a PC with an
Nvidia RTX 2080 GPU, equipped with 32 GB of RAM,
an Intel i7-9700k processor, and a Windows 10 64-bit
operating system. The network can be trained under six
hours. The running time of the algorithm is 88 ms for
an image of a 1024×1024 resolution. Considering that 1
mm corresponds to 5 pixels and our method is suitable for
parallel operation, it can be deduced that the algorithm can
inspect fabric webs flowing at 2 m/s with several parallel
cameras. Besides, unlike most models in the literature,
this network only has a size of 300 MB and can be used in
embedded systems.

3. Conclusion

With the push of the developing technology and
competitive industrial environment, a great demand has
emerged for intelligent visual inspection systems. An
intelligent visual inspection system should be applicable
to different textured and patterned surfaces and can be
adjusted quickly to new products. Moreover, it should
keep pace with high production speed. Nested AEs are
the main thrust of this study, and the proposed method
can recognize surface defects in the real world and it
requires only defect-free sample images for training. The
first of two nested AEs extracts the features of the image

Fig. 4. Comparison of standard AE based methods with the
proposed nested AE approach. Top to bottom are the
original defective samples, predicted defect-free images
of the vanilla convolutional AE, the denoising convolu-
tional AE and the proposed nested AE, respectively.

and reconstructs the image from these features. The
other is used to identify and fix defects in the feature
code. The nested AE is trainable under six hours
for very complex patterned surfaces. Our method is
suitable for a real-time system due to its small footprint
and fast operation. The proposed approach is tested
on a real-world complex dataset provided by MVTec
with 97% defect detection and 78% pixel-level defective
region segmentation accuracy. In future work, we plan
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to increase pixel-level detection accuracy by comparing
reconstructed defective and defect-free images with a
better method instead of a simple subtraction operation.
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