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A B S T R A C T

L-aspartic acid (L-AA) based MOFs were prepared from acetate, chloride, nitrate, and sulfate salts of Cu(II) ions as
L-AA-Cu(II)-A,-C,-N,-S, respectively with 96.7 � 2.4, 89.8 � 3.1, 92.1 � 1.5, 74.6 � 5.2 m2/g, surface areas. L-AA-
Cu(II)-MOFs in the same order induced 0.43 � 0.25%, 0.94 � 0.24%, 0.91 � 0.40%, 1.18 � 0.10% hemolysis, all
being <2%, and blood clotting indices of ~90% and can be considered nonhemolytic and non-coagulative at 1
μg/mL concentration. L-AA-Cu(II)-A MOFs exhibited 86.3 � 0.2, and 92.4 � 0.6% α-Glucosidase inhibitory ac-
tivities at 1.0 and 10.0 μg/mL concentrations, respectively. Moreover, L-AA-Cu(II)-S MOFs had effective anti-
microbial activities against E. coli (ATCC-8739), and S. aureus (ATCC-6538) with MIC values of 0.63 mg/mL and
1.25 mg/mL for C. albicans (ATCC-10231). L-AA-Cu(II) MOFs synthesized herein with hemocompatible, antimi-
crobial and antidiabetic properties prompt interesting possibilities for both industrial and biomedical
applications.
1. Introduction

Metal-organic frameworks (MOFs), also known as porous coordina-
tion networks (PCNs), are sophisticated products of material science,
considerably captured scientific interest in the last two decades [1].
Enormous accessible internal surface areas, high void volumes, and
numerous chances of metal and organic ligand combinations as well as
finely adjustable structural properties of MOFs through pre-, and post
synthetic approaches bestow them unprecedented versatility to target
vast array of applications in biological and industrial realms [1–3]. Not
only the extraordinary topology and structural properties of MOFs exert
potent functionalities but also the flexibility in synthesis and modifica-
tion methodologies provide great opportunity to design tailor-made
unique MOF structures demanded in broad spectrum of applications
from supercapacitor [4], and catalysis applications [5], carbon capture
[6], gas absorption and storage technologies [7,8] to magnetic and mo-
lecular separation [9], biosensing [10], bioimaging [11], drug delivery
University, Faculty of Science an
, Canakkale, 17100, Turkey.
er).

May 2021; Accepted 3 May 2021

vier B.V. This is an open access ar
[12], and much more. Solvent evaporation method [13], diffusion
method [14], hydro(solvo) thermal method [15,16], microwave reaction
and ultrasonic method [17], stand out some of the most preferred
methodologies in synthesis of MOFs. Although most of the industrial
MOFs are comprised of toxic metal ions and organic ligands, those for-
mulations intended for biomedical applications require biocompatibility
and safety as primary criteria [18]. Hence, meticulous attempts on
integrating MOFs into biomedical applications together with urging
quest for environment friendly MOFs in industry have led to exploration
of biocompatible, non-toxic, or relatively as much lowest-toxicity metal
and ligand combinations for construction of innocuous coordination ar-
chitectures so called “green MOFs” [19]. In this context, MOFs designed
from biological molecules (bio-ligands) such as saccharides [20], amino
acids [3,21], peptides [22–24], nucleobases [25–27], and phenolic
compounds [28–31] opened up a solid-step-forward novel insights in
development of MOF materials not only for their biocompatibility, but
they also offered added advantage to employ inherent functionality of
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biomolecules. The benefits of utilizing functional biomolecules are
multiple coordination sites, multidentate coordination modes, chirality,
aliphatic/cyclic backbone functionalities, self-assembly properties, facile
modifiability, hydrogen bonding, ionic and π–π stacking interactions [3,
19], along with natural abundance and amenable commercial availabil-
ity in bulk quantities.

Amongst the a forecited biomolecules, amino acids are one of the
most important bio-ligands in bio-MOF formulations [19]. They are the
smallest functional units of proteins dictating their interactions with
other molecules through noncovalent weak interactions via their
carboxylate and amino groups serving as metal chelation/complexing
sites [32]. Also, various side groups of amino acids with different char-
acters such as charged, hydrophilic/hydrophobic, or aliphatic/aromatic
moieties are employed as binding sites for metal ions hence, aid main-
taining protein functions [33].

Numerous MOF preparations with different metal ions have been
formulated from various amino acids including, L-tryptophan [34],
L-glutamic acid [35], L-glutamine [36], L-alanine [37], L-tyrosine [38],
L-serine [39], L-glycine [40], L-histidine [41], and L-aspartic acid [42].

L-aspartic acid is a non-essential, yet a pivotal α-amino acid involved
in many biological tasks such as participating cellular energy production,
synthesis of other biomolecules and proteins [43], inhibition of
β-Glucuronidase in blockage of enterohepatic bilirubin circulation [44],
and antagonizing effects on inhibition of L-asparaginase activity of
morphine in brain [45], and so forth used for treatment of opiate
addiction [46], hypertension, hepatopathy and heart diseases [47]. Not
only can L-aspartic acid function as a multifunctional biomolecule in
metabolic processes, but it has also been considered an interested
molecule from chemical point of view due mainly to possessing three
potential donor sites conveniently allows for development of versatile
coordination complexes [32,48,49].

In this study, L-aspartic acid (L-AA) has been chosen as a natural-
based organic ligand (bioligand) and different salts of Cu(II) ion such
as Cu(II) acetate (-A), Cu(II) chloride (-C), Cu(II) nitrate (-N), Cu(II)
sulfate (-S), as metal linkers were used to prepare L-AA-Cu(II)-A, L-AA-
Cu(II)-C, L-AA-Cu(II)-N, and L-AA-Cu(II)-S MOFs. Structural, morpho-
logical, compositional, and surface characterization of the L-AA-Cu(II)
MOFs were caried out by X-Ray diffraction (XRD), Fourier transform
infrared (FT-IR) spectroscopy, atomic absorption spectroscopy (AAS),
thermogravimetric analysis (TGA), scanning electron microscopy (SEM),
and Brunauer–Emmett–Teller (BET) N2 adsorption/desorption analyses.
In order to evaluate the biomedical potential of L-AA based Cu(II) MOFs,
blood compatibility tested via in vitro hemolysis and blood clotting assays
were investigated. Also, ɑ-Glucosidase inhibitory activity of L-AA based
Cu MOFs were evaluated to determine their antidiabetic potential.
Furthermore, antimicrobial properties of L-AA-Cu(II) MOFs were
explored against gram (�) E. coli (ATCC 8739), gram (þ), S. aureus
(ATCC 6538) bacteria and C. albicans (ATCC 10231)) fungal strains to
reveal their antimicrobial capacity for both biomedical and industrial
application potentials.

2. Experimental

2.1. Materials

The L(þ)-Aspartic acid (L-AA, 98%, Acros) was used as bridging bio-
ligand, and copper acetate monohydrate (CuCH3COOH.H2O, 98%, Sigma
Aldrich), copper chloride anhydrous (CuCl2, 99%, Kimetsan), copper
nitrate hexahydrate (Cu(NO3)2.6H2O, 98%, Fluka), and copper sulfate
pentahydrate (Cu(SO4)2.5H2O, 99%, Sigma Aldrich) metal salts were
used as sources of Cu(II) ions in synthesis of L-AA-Cu(II) MOFs. Sodium
hydroxide (NaOH, 99%, Merck) and hydrochloric acid (HCl, 36.5%,
WVR Chemicals) were used in pH adjustments of L-AA aqueous solutions.
Sodium chloride (NaCl, 99%, Sigma Aldric), and calcium chloride (CaCl2,
99%, Merck) were used in blood compatibility assays. The ɑ-Glucosidase
from Saccharomyces cerevisiae (EC Number: 3.2.1.20, 10 units/mg
2

protein, Sigma Aldrich), and 4-nitrophenyl α-D-glucopyranoside (4-NPG,
99%, Acros) as a calorimetric substrate for α-Glucosidase were used in
enzyme inhibition studies.

2.2. Synthesis of L-AA-Cu(II) MOFs with different anion source

The synthesis of L-AA based MOFs was accomplished in aqueous
medium following the literature with small changes [50]. In brief, a 100
mL beaker was charged with 1.0 g of L-AA and dissolved in 50 mL of
double-distilled water (DDw) at 500 rpm stirring via occasional addition
of 1 M NaOH solution. After complete dissolution of L-AA, the pH of
solution was adjusted to 7.0 by using 1MHCl solution. Then, the aqueous
solutions of Cu (II) prepared from acetate, chloride, nitrate, and sulfate
salts containing stoichiometrically 1:1 mol ratio of Cu(II) ions with
respect to L-AA were added drop-by-drop into different L-AA solutions at
pH 7 and stirred at 750 rpm mixing for 12 h. Afterwards, blue colored
solid assemblies (L-AA based Cu(II) MOFs) formed during the reaction
were filtered and washed in sequence with water, water-ethanol (1:1
v/v), and water, then lyophilized to dryness via a freeze-dryer and stored
in closed tubes until further usage. L-AA-Cu(II) MOFs were named ac-
cording to Cu(II) sources used as L-AA-Cu(II)-A, L-AA-Cu(II)-C,
L-AA-Cu(II)-N, and L-AA-Cu(II)-S, respectively for acetate, chloride, ni-
trate, and sulfate salts of copper.

2.3. Characterization of Cu(II) based MOFs

The scanning electron microscope (SEM, 400F Field Emission SEM,
Quanta) was used for the visual characterization of L-AA based Cu(II)
MOFs’ morphology. For this purpose, certain amounts of dry samples
mounted on SEM stubs were sputtered in gold an imaging was performed
under vacuum at 30.00 kV operation voltage.

X-ray powder diffraction patterns of the L-AA and L-AA based Cu(II)
MOFs were recorded by a PANalytical X'Pert Pro MPD diffractometer
equipped with CuKα radiation and the X'Celerator detector on diffracted
beam [51]. The XRD data were collected in a Bragg Brentano (θ/θ)
vertical geometry operating in flat reflection mode between 3� and 70�

(2θ) in steps of 0.02� 2θ with 1 s step-counting time. The X-ray tube
operating at 40 mA, 45 kV was used and 1/2� divergence slit with a 0.04
rad soller slit and a 10 mm fixed mask was placed in the incident beam
pathway. The raw powder diffraction data was processed with High
Score Plus (v.4.6.0) software, for peak identification and analyses of
diffraction peaks by automated search-match calculation. Schematic
crystallographic structure of L-AA-Cu(II) MOF was modelled by Corto-
na3D software.

The FT-IR spectra (Spectrum, PerkinElmer) of L-AA based Cu(II)
MOFs were recorded in the range of 4000-650 cm�1 wavenumbers at 4
cm�1 peak resolution, and the average of four internal scans were
collected by attenuated total reflection (ATR) method.

Thermal behaviors of L-AA based Cu(II) MOFs were characterized by
a thermogravimetric analyzer (TGA, SII 6300, Exstar). Briefly, certain
amounts of MOF samples were placed into TGA pans and heated up to
100 �C under flow of 200 mL/min N2 gas at 10

�
C/min heating rate and

held for 15 min to eliminate moisture and then were heated up to 1000
�C. TGA curves of L-AA-Cu(II) MOFs were constructed by plotting cu-
mulative weight loss against temperature, the effect of Cu(II) source on
thermal stability of MOFs was compared.

Atomic absorption spectrometer (AAS, iCE 3000, Thermo) was used
for the determination of metal ion content of L-AA based Cu(II) MOFs.
Shortly, 50 mg of each type of MOF samples were placed into 40 mL of 5
M HCl solution and stirred for 4 h for the disassembly of coordination
bonds and, Cu(II) ion contents were determined by AAS from the pre-
viously constructed Cu(II) calibration curve.

Porosity and surface properties of L-AA-Cu(II) MOFs were charac-
terized by a surface area and porosity analyzer (TriStar II, Micromeritics)
based on N2 adsorption/desorption kinetics using BET and BJHmethods.
Briefly, MOF samples were degassed with N2 gas for 12 h before analysis,
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and N2 gas adsorption/desorption curves were obtained under liquid
nitrogen environment.

2.4. α-Glucosidase inhibition studies

L-AA based Cu(II) MOFs were investigated for their potential inhib-
itory effects on ɑ-Glucosidase enzyme by following the reported enzyme
assay in literature [52]. 4-NPG as a colorimetric substrate of α-Glucosi-
dase was used for determination of enzymatic activity. The inhibition
assay was performed via a microplate reader (Multiskan Sky, Thermo) at
the wavelength of 405 nm, the amount of 4-NP as an end-product of
enzymatic reaction was quantified and compared with the control group
lacking MOF samples. All four types of L-AA based Cu(II) MOFs at 10
μg/mL concentration were used for enzyme inhibition assay and the
L-AA-Cu(II)-A MOFs with the highest inhibition effect was further
investigated for its concentration dependent activity at 0.25, 1, 5, 10, and
25 μg/mL concentrations.

2.5. Antimicrobial properties

The antimicrobial activities of L-AA-Cu(II) MOFs against E. coli (gram
-, ATCC 8739), S. aureus (gram þ, ATCC 6538) and C. albicans (fungi,
ATCC 10231) were investigated via micro-dilution method [53]. Spe-
cifically, 10 mg of different types of L-AA-Cu(II) MOFs were suspended in
10 mL of IS solutions to achieve a final concentration of 1 mg/mL. Af-
terwards, the sample suspensions were sterilized under UV light at 420
nm for 1 min. Then, the bacterial and fungal strains revived from �20 �C
stock at room temperature (20 �C) 24 h prior to experiment were
adjusted for turbidity as nearly 1 � 108 colony forming unit per mL
(CFU/mL) for each according to McFarland 0.5 standard. Then, different
concentrations of samples from 0.312 mg/mL to 1 mg/mL were added
into 2 mL of nutrient broth media, and 20 μL of each microorganism
suspension was inoculated in sample containing liquid media. After then,
microorganisms were incubated at 35 �C for 18–24 h. After the incuba-
tion, 100 μL of each inoculumwas seeded on separate nutrient agar plates
with proper dilutions using IS solution wherever necessary and then
incubated for 24 h more at 35 �C. Afterwards, survivors of bacterial and
fungal colonies were counted to quantify minimum inhibition concen-
tration (MIC) and minimum bactericidal/fungal concentration (MBC,
MFC) activities of L-AA based Cu(II) MOFs.

2.6. Blood compatibility studies

Blood compatibility of the L-AA based Cu(II) MOFs were evaluated by
in vitro hemolysis and blood clotting assays according to literature with
minor alterations [53]. Hemocompatibility assays were performed after
the institutional approval from the Human Research Ethics Committee of
Canakkale Onsekiz Mart University
(2011-KAEK-27/2020-E.2000045671). Humanwhole bloodwas used for
the assays, and the blood specimens were freshly obtained from healthy
unmedicated people via vacutainer syringes and then preserved in
vacutainers containing anticoagulant EDTA to inhibit clotting. Both he-
molysis and clotting assays were performed at final sample concentra-
tions of 1 μg/mL prepared by suspending L-AA Cu(II) MOFs in 0.9%
isotonic saline (IS) solution.

2.7. Hemolysis test

For the assessment of % hemolytic ratio induced by L-AA based Cu-
MOFs, 10 μL of 1000 μg/mL sample suspensions prepared in IS solu-
tion was further diluted up to 9.8 mL and incubated at 37.5 �C for 15min.
Meanwhile, 2 mL of anticoagulated blood was diluted with 2.5 mL of IS
and 0.2 mL of this blood solution was added into sample tubes, mixed by
gentle inversion and then incubated for 1 h at 37.5 �C in a shaking water
bath. Positive and negative control groups were set by incubating 0.2 mL
of diluted blood in only DDw and IS solution, respectively. At the end of
3

incubation process, 1.5 mL aliquots of blood-MOF suspensions and con-
trols were taken and centrifuged at 1340 rpm for 5 min. Afterwards su-
pernatants of samples were carefully aspirated into UV–Vis cuvettes and
absorbance values were measured at 542 nm. The hemolysis% ratio was
calculated from Eq. (1) given below:

Hemolysis ð%Þ¼
�
Asample
542 � ANegative

542

�

�
APositive
542 � ANegative

542

�� 100 (1)

Where Asample
542 is the absorbance of blood-MOF suspension, ANegative

542 and
APositive
542 are absorbances of respectively only blood-IS and only blood-DDw

solutions, respectively.
2.8. Blood clotting test

The blood clotting capacity of L-AA-Cu(II) MOFs were assessed via
blood clotting assay. Concisely, 10 μL of 1000 μg/mL sample suspensions
prepared in IS solution were placed into falcon tubes and placed into a
shaking water bath at 37.5 �C for 15 min incubation. Then, recording the
time in a synchronous fashion, 3 mL of anticoagulated whole blood was
mixed with 0.24 mL of 0.2 M freshly prepared CaCl2 solution followed by
immediate addition of 0.270 mL of CaCl2 added blood on top of MOF
samples in a way that entire portion of sample suspensions were covered
by the added blood specimens. After incubation of samples at 37.5 �C for
10 min blood-sample mixtures were added 10 mL of DDw and centri-
fuged for 1 min at 540 rpm to precipitate potential clots that might
possibly be developed depending upon the nature of materials. After
centrifugation, fluid portion of blood was further diluted with 40 mL of
DDw in a separate tube without transferring solid clots if formed. Finally,
samples were incubated for 1 h at 37.5 �C before reading the absorbance
values at 542 nm wavelength. As a control group, 0.270 mL of blood was
mixed with 50 mL of DDw and assayed under the same conditions. The
blood clotting index of MOF samples were calculated from Eq. (2):

Blood clottin indexð%Þ¼
�
Asample
542

�
�
AControl
542

�� 100 (2)

Where ASample
542 and AControl

542 are the absorbance values of blood-MOF sus-
pensions and blood solution solely incubated by 50 mL of DDw,
respectively.

3. Results and discussion

3.1. Synthesis and characterization of L-AA based amino acid Cu(II)
MOFs

In our previous studies, we reported the synthesis, characterization,
antimicrobial, and sensory properties of MOFs prepared by L-Glu as
organic ligand, and Cu(II), Ni(II), and Co(II) ions as metal nodes [35]. In
this investigation, another acidic amino acid, L-AA was pursued in the
preparation of porous coordination networks (PON) in a greener syn-
thesis methodology using different salts of Cu(II) ions as acetate (A),
chloride (C), nitrate(N), and sulfate(S) and their effect on physico-
chemical properties of preparedMOFs was thoroughly investigated. L-AA
is known to be negatively charged at physiological pH, the carboxyl
groups of which are found in deprotonated form whereas the amino
groups are in protonated state. Schematic illustration of L-AA based
Cu(II) MOFs synthesis is given in Fig. 1 (a).

As seen from Fig. 1 (a), the carboxylate groups of L-AA and various
salts of Cu(II) ions were electrostatically interacted to develop L-AA-
Cu(II) coordination assemblies and blue colored solid phases were ob-
tained after synthesis for all Cu(II) ion sources (data not shown).

SEM images of L-AA-Cu(II)-A, L-AA-Cu(II)-C, L-AA-Cu(II)-N, and L-
AA-Cu(II)-S MOFs are given in Fig. 1 (b). As can be easily noticed from
the micrographs, all types of L-AA Cu(II) MOFs attained are similarly in



Fig. 1. (a) Schematic representation of L-AA based MOF synthesis, (b) long-shot and (c) closeup SEM images of the L-AA Cu(II) based MOFs prepared from different
salts of Cu(II) ions.

G. Gizer et al. Current Research in Green and Sustainable Chemistry 4 (2021) 100110
rod-like or fiber-like morphologies and sizes range approximately 8–15
μm in length and 0.2–0.5 μm widths which can be more visibly realized
from closeup SEM images (at 50,000X magnifications) given in Fig. 1 (c).
Zhao et al. disclosed the influence of materials’ shape on their potential
for biomedical application [54]. In the study on mice, the retention times
of materials of different shapes in stomach and intestine were assed and
found that the retentions of rod-like structures in stomach and intestine
were more than those of the spherical shaped structures [54]. Materials
with rod-like morphology has also been reported to have several ad-
vantages such as effective, directed path for charge carriers [55], and
minimal percolation thresholds [56]. These advantages of rod-like
structures can be explained with their physical properties pertaining to
aspect ratio, volume fraction, polydispersity and orientation [57].

The phase purity and crystallographic structures of native L-AA, and
L-AA-Cu(II)-A, L-AA-Cu(II)-C, L-AA-Cu(II)-N, and L-AA-Cu(II)-S MOFs
4

were characterized by XRDmeasurements and the obtained XRD patterns
are demonstrated in Fig. 2 (a).

The main XRD peaks were observed at 11.7, 23.6, 35.8, and 37.1�2Ɵ
with (0 0 1), (0 0 2), (0 0 3), and (1 0 3) planes, respectively. X-ray
diffraction spectra of all types of L-AA-Cu(II) MOFs have shared the same
peak positions with different intensities of diffractions. These intense
diffraction peaks suggest the presence of good crystallinity in L-AA-Cu(II)
coordination. The crystallinity of L-AA based Cu(II) MOFs was ranged
from L-AA-Cu(II)-A to L-AA-Cu(II)-C, L-AA-Cu(II)-N, and L-AA-Cu(II)-S
MOFs with respectively 81.5, 74.8, 76.4, and 50.2% crystalline charac-
ters. Fig. 2 (b) depicts schematic crystallographic structure of L-AA based
Cu(II) MOFs. L-AA is an acidic amino acid with an amino and two
carboxylate groups. Each of these functional groups can potentially be
served as donor sites for metal centers. However, based on computa-
tionally constructed model dominant pattern on MOF formation follows

mailto:Image of Fig. 1|tif


Fig. 2. (a) The XRD pattern of L-AA and L-AA based Cu(II) MOFs and (b) the illustration of coordination patterns between L-AA and Cu(II) ions obtained by
computational modelling.
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coordination of two carboxylate groups of L-AA with Cu(II) ions. More-
over, the crystallographic data for L-AA-Cu(II) MOF structures are sum-
marized in Table S1. As seen from and Fig. 2 (b), the hexagonal
crystallization was occurred for all types of L-AA-Cu(II) MOFs.

For the structural analysis, FT-IR spectra and TGA curves of L-AA-
Cu(II) MOFs are respectively presented in Fig. 3 (a) and (b), In the FT-IR
spectrum of L-AA, the peaks at 1685 cm�1 were assigned to C¼O
stretching modes of carboxylic acid groups, and the peaks at 1501, and
1419 cm�1 were attributed to COOH stretching vibrations [58]. In
addition, the FT-IR peaks recorded around 1640, and 1597 cm�1 were
assigned to N-H stretching and bending frequencies of NH2 groups, while
the peaks appeared at 1149 and 1118 cm�1 were attributed to NH2
rocking modes, respectively [58]. As can be seen from FT-IR spectra of all
L-AA-Cu(II) based MOFs, it is worth noting to point out change and
shifting the C¼O peaks at 1685 cm�1 and maintenance of amine peaks in
the MOF structure with red and blue shifts coherently validates compu-
tationally obtained crystallographic coordination model given in Fig. 2
(b), and hence supports formation of L-AA based Cu(II) MOFs through
coordination of carboxylate groups with Cu(II) ions. Characterization of
MOFs’ thermal stability is another useful means of predicting their po-
tential applications especially in industrial use [59]. Thermal degrada-
tion of L-AA based Cu(II) MOFs were given in Fig. 3 (b). From the TGA
curve of native L-AA, it is seen that degradation was completed in 3 steps
between 210 and 260, 360–415, and 480–640 �C with 25.4, 59.2, 98.8%
weight losses, respectively and 99.2% of cumulative weight loss was
observed at 1000 �C. On the other hand, the thermal stability of L-AA
based Cu(II) MOFs were decreased as was seen to progress in 4 main
degradation steps with similar trends except for slight differences at
initial decomposition temperatures ranging from L-AA-Cu(II)-S to C, A
and N in ascending order. Thermal degradation steps of L-AA based
Cu(II) MOFs occurred between 100 and 150 �C, 200–240 �C, 300–390 �C,
and 450–640 �C with approximately 5, 50, 60 and 65% weight losses,
respectively.

The residual weight percent were determined as nearly 35% for all L-
AA-Cu(II) MOFs and composition of the remainders were anticipated to
contain Cu2O residues [60]. Moreover, the amount of Cu(II) ions con-
tained by L-AA based MOFs were determined via AAS and calculated
yield%, as well as gravimetric amounts of Cu(II) ions based on AAS
analysis are summarized in Table 1.

The amount of Cu(II) ions per gram of L-AA based Cu(II) MOFs were
5

found to be almost similar for all types as 239.3 � 15.9, 254.9 � 11.6,
257.1 � 16.2, and 239.2 � 14.8 mg/g for L-AA-Cu(II)-A, L-AA-Cu(II)-C,
L-AA-Cu(II)-N, and L-AA-Cu(II)-S MOFs, respectively and the yield% was
calculated as 40.5 � 2.1, 50.8 � 1.9, 40.2 � 1.6, and 36.8 � 1.3% in the
same order.

The surface and porosity of the L-AA-Cu(II) MOFs were investigated
via N2 adsorption/desorption measurements and corresponding iso-
therms were given in Fig. 4 (a). N2 adsorption/desorption curves of all L-
AA-Cu(II)-A, L-AA-Cu(II)-C, L-AA-Cu(II)-N, and L-AA-Cu(II)-S MOFs have
shown to exhibit characteristics of type II isotherms and H4 type hys-
teresis loops suggesting presence of narrow slit-like mesopores in the
MOF structures [61].

The plots given in Fig. 4 (b) illustrates distribution of the pore size in
the structure of L-AA based Cu(II) MOFs where two kinds of pore sizes
can be clearly identified in all types of L-AA Cu(II) MOFs around 50 to 60
Ao for L-AA-Cu(II)-A, L-AA-Cu(II)-C, and L-AA-Cu(II)-N MOFs whereas
slightly lower pore size have seen in L-AA-Cu(II)-S MOFs around 40 Ao.

The average SBET surface areas, pore sizes and volumes of L-AA-Cu(II)
MOFs were summarized in Table 1. As seen from the results of SBET
analysis, almost similar surface areas were obtained for L-AA-Cu(II)-A, L-
AA-Cu(II)-C, and L-AA-Cu(II)-N MOFs with respectively 96.7 � 2.4, 89.8
� 3.1, 92.1� 1.5 m2/g, and a lower surface area of 74.6� 5.2m2/g for L-
AA-Cu(II)-S MOFs. Based on these findings, it is plausible to reach a
conclusion that the SBET data gave supportive results with Fig. 4. The
magnitude of average pore volumes for all L-AA-Cu(II) MOFs were found
between 0.25 and 0.29 cm3/g and, the average pore sizes for L-AA-Cu(II)-
A, L-AA-Cu(II)-C, L-AA-Cu(II)-N, and L-AA-Cu(II)-S MOFs were measured
as 6.4 � 0.2, 7.7 � 0.2, 6.9 � 0.1, and 8.3 � 0.6 nm, respectively.
Therefore, all the prepared L-AA-Cu(II) are mesoporous materials.

3.2. ɑ-Glucosidase enzyme inhibition capability of L-AA-Cu(II) based
MOFs

The inhibition of ɑ-Glucosidase enzyme has attracted great attention
due to its treatment potential on type II diabetes and hyperglycemia in a
controllable manner [62]. Controllable inhibition of ɑ-Glucosidase
enzyme provides a chance for balancing blood sugar levels and help
ameliorating deleterious effects of type II diabetes and associated with
hyperglycemia [63]. Many researchers investigated the inhibition of
ɑ-Glucosidase enzyme in the treatment type II diabetes to enhance

mailto:Image of Fig. 2|tif


Fig. 3. Comparison of (a) the FT-IR spectra and (b) TGA graphs of native L-AA, and L-AA based Cu(II) MOFs.

Table 1
Cu(II) ion contents, gravimetric yields (%), surface and porosity properties of L-AA-Cu(II) MOFs.

MOFs Cu(II) salts of Amount of Cu(II) (mg/g) Yield% Surface Area (m2/g) Pore volume (cm3/g) Pore Size (nm)

L-AA-Cu(II) Acetate 239.3 � 15.9 40.5 � 2.1 96.7 � 2.4 0.25 � 0.01 6.4 � 0.2
Chloride 254.9 � 11.6 50.8 � 1.9 89.8 � 3.1 0.29 � 0.01 7.7 � 0.2
Nitrate 257.1 � 16.2 40.2 � 1.6 92.1 � 1.5 0.29 � 0.02 6.9 � 0.1
Sulfate 239.2 � 14.8 36.8 � 1.3 74.6 � 5.2 0.25 � 0.01 8.3 � 0.6
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therapeutic efficacy [64–67]. MOFs are reported to interact with en-
zymes through hydrogen bonding, electrostatic, and van der Waals forces
[68,69]. Many Cu (II) basedMOFs synthesized using various ligands such
as nitrogen containing ligands, insulin mimetic ligands or mixed ligand
complexes have been reported for their a-Glu inhibitory activities
[70–72]. L-AA was ported to be present and in active sites of α-Glucosi-
dase and other homology modelled analog enzymes [73] together with
other amino acids such as arginine, glutamic acid, and histidine residues
[74].

Here, considering the function of L-AA in α-Glucosidase enzyme and
6

the strong coordination ability of Cu (II) ions with L-AA [32] as well as
with the other amino acids [35,75] that is present in the active site of the
enzyme, the ɑ-Glucosidase inhibitory activity of L-AA based Cu(II) MOFs
prepared from different metal ion sources were investigated at 10 μg/mL
concentration and the results are demonstrated in Fig. 5 (a). It was clearly
seen from Fig. 5 (a) that, L-AA based Cu(II) MOFs achieved approxi-
mately 90% inhibition activity at 10 μg/mL concentration.

Specifically, inhibitory activities of L-AA-Cu(II)-A, L-AA-Cu(II)-C, L-
AA-Cu(II)-N, and L-AA-Cu(II)-S MOFs were found to be 92.4 � 0.6, 91.5
� 0.3, 90.3 � 1.3, and 90.1 � 1.7%, respectively. Almost entirely

mailto:Image of Fig. 3|eps


Fig. 4. (a)The N2 gas adsorption/desorption isotherms and (b) pore size distribution plots of L-AA based Cu(II) MOFs.
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inhibition of α-Glucosidase by L-AA based Cu(II) MOFs even at as low as
10 μg/mL concentrations highlights their potency in development of
potential therapeutics thereof. On the other hand, concentration-
dependent inhibition study performed on L-AA-Cu(II)-A MOFs revealed
preservation of about 50% inhibition activity even after 40 folds of
dilution (0.25 μg/mL). Affectedly, as can be seen from Fig. 5 (b), the
concentration dependence of L-AA-Cu(II)-A MOFs in 0.25–25 μg/mL
range revealed 50.8� 0.9, 68.7� 0.3, 86.3� 0.2, 92.4� 0.6, and 92.7�
0.2% inhibition capability. This result corroborates that the L-AA-Cu(II)-
A can be potentially used in the treatments of type II diabetes at �25 μg/
mL with over 90% inhibition of α-Glucosidase enzyme. However, more
elaborate experimental or computational analyses on the binding modes,
and affinities to characterize detailed mechanism of α-Glucosidase inhi-
bition need to be studied.

3.3. Antimicrobial properties of L-AA-Cu(II) MOFs

In the literature, the antibacterial activities of MOFs have been
described in two possible routes such as by the action of metal ions
leached from MOF crystals interfering with the ion transport system and
enzymatic activities of bacteria or through loss of bacterial cell wall
integrity by the active metal sites of MOFs which are known to disrupt
the bacterial membrane and cause outflow of the cytoplasmic contents
[76]. In a study reported by Zhuang et al., the Co (II)-based MOF,
[Co4(H2O)2(TDM) (H2O)8] (Co-TDM, TDM8� ¼[(3,5-
dicarboxyphenyl)-oxamethyl] methane), were revealed to exert effective
bactericidal activity against E. coli [76]. Lu et al., reported the higher
antibacterial activities of three-dimensional Ag-MOFs than the com-
mercial silver (Ag) NPs [76]. Furthermore, Rodríguez et al., reported that
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the crystals of HKUST-1 (¼MOF-199), [Cu3(BTC)2(H2O)3]n where BTC is
1,3,5-benzenetricarboxylate, immobilized on cellulose fibers have had
very good antibacterial activity against E. coli [76]. Moreover, four
different Cu(II) based MOF formulations [Cu2(Glu)2(μ-L)]xH2O (Glu¼-
glutarate, L¼4,40-bipyridine (1), 1,2-bis(4-pyridyl)ethane (2), 1,2-bis(4--
pyridyl)ethylene (3), and 1,2-bis(4-pyridyl)propane (4)), prepared by Jo
et al., were shown to exert excellent antibacterial activities against E. coli,
S. aureus, K. pneumonia, P. aeruginosa, and Methicillin -resistant S. aureus
(MRSA) bacteria with the MBC values of 20 μg/mL for all bacterial strains
[77]. In this study, the antimicrobial properties of the L-AA-Cu(II) MOFs
were investigated against E. coli (gram -, ATCC 8739), S. aureus (gram þ,
ATCC 6538) and C. albicans (fungi, ATCC 10231) by micro-dilution
method. The minimum inhibition concentration (MIC), and minimum
bactericidal/fungicidal concentration (MBC/MFC) values of L-AA based
Cu(II) MOFs prepared from different salts had been compared with each
other and summarized in Table 2.

Gentamicin was used as a control in the experiment andMIC values of
which against E. coli, S. aureus and C. albicans were reported to be 0.008
mg/mL, 0.01 mg/mL, and 0.0025 mg/mL, respectively [78–80]. L-AA
based Cu(II) MOFs have shown considerable antibacterial and antifungal
activity against indicated microorganisms. The L-AA-Cu(II)-C and
L-AA-Cu(II)-N MOFs were shown to attain MIC values of 1.25 mg/mL for
E. coli whereas L-AA-Cu(II)-A and L-AA-Cu(II)-S MOFs had lower MIC
value as 0.63 mg/mL. MBC values of all types of L-AA-Cu(II) MOFs for
E. coli were determined as 2.50 mg/mL. Moreover, L-AA-Cu(II)-C and
L-AA-Cu(II)-S MOFs exhibited MIC values of 0.63 mg/mL against
S. aureus, while L-AA-Cu(II)-A and L-AA-Cu(II)-NMOFs had 1.25 mg/mL.
The MBC values for all types of L-AA-Cu(II) MOFs were determined as
2.50 mg/mL same as those for E. coli. The L-AA-Cu(II) MOFs were also

mailto:Image of Fig. 4|eps


Fig. 5. (a) The α-Glucosidase inhibition activity of L-AA based Cu(II) MOFs at
10 μg/mL concentration, and (b) concentration dependent α-Glucosidase
inhibitory activities of L-AA-Cu(II)-A MOFs from 0.25 to 25 μg/mL.

Table 2
MIC and MBC/MFC values of L-AA based Cu(II) MOFs against E. coli (gram -) and
S. aureus (gram þ) bacterial and C. Albicans fungal strains.

Organisms L-
AA-Cu(II)
MOFs

E. coli S. aureus C. albicans

MIC
(mg/
mL)

MBC
(mg/
mL)

MIC
(mg/
mL)

MBC
(mg/
mL)

MIC
(mg/
mL)

MFC
(mg/
mL)

A 0.63 2.50 1.25 2.50 1.25 2.50
C 1.25 2.50 0.63 2.50 2.50 2.50
N 1.25 2.50 1.25 2.50 2.50 2.50
S 0.63 2.50 0.63 2.50 1.25 2.50
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shown to possess effective antifungal properties against C. albicans with
slightly higher MIC values. MIC values of L-AA-Cu(II)-C and
L-AA-Cu(II)-N MOFs were found to be 2.5 mg/mL on the other hand,
L-AA-Cu(II)-A and L-AA-Cu(II)-S MOFs had lower MIC values with 1.25
mg/mL concentration. The MFC values of all types of L-AA based Cu(II)
MOFs were determined as 2.50 mg/mL concentrations. The differences
on the antimicrobial properties of L-AA based Cu(II) MOFs prepared from
different metal precursors could be due to several factors e.g., differences
in their surface areas and Cu(II) contents that might be affecting their
engagement to microorganisms as well as the differences in the hydrogen
bonding capabilities of counter ions i.e., acetate, chloride, nitrate, and
sulfate salts of Cu(II)) [81] that may have also an effect on their inter-
action with the microorganisms [82].
Fig. 6. The assessment of hemocompatibility of the L-AA-Cu(II) MOFs via (a)
hemolysis and (b) blood clotting assays.
3.4. Blood compatibility of L-AA-Cu(II) MOFs

Blood compatibility of nanomaterials is one of the crucial concerns in
evaluation of their feasibility for biomedical applications [83]. Nano-
materials introduced into bloodstream are recognized as foreign object
and will be coated by serum proteins including coagulation factors and
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inflammatory complement system components and induce a physiolog-
ical response such as inflammation, hemolysis or stimulation of blood
coagulation cascades depending upon the nature of materials [84–86].
Hemocompatibility of L-AA based Cu(II) MOFs were determined via in
vitro hemolysis and blood clotting assays in order to evaluate their po-
tential for biomedical applications requiring blood contact and the re-
sults were illustrated in Fig. 6 (a) and (b), respectively. Hemolysis
induction of L-AA and L-AA-Cu(II)-A, -C, -N, -S MOFs at 1.0 μg/mL
concentration are found to be 0.61 � 0.20%, 0.43 � 0.25%, 0.94 �
0.24%, 0.91 � 0.40%, 1.18 � 0.10%, respectively. Based on these results
L-AA based Cu(II) MOFs can be regarded as nonhemolytic at 1 μg/mL
concentrations [87]. Considering the α-Glucosidase inhibitory activity of
L-AA-Cu(II)-A MOFs as 68.7� 0.3% at this concentration and MIC values
of respectively 0.63, 1.25 and 1.25 mg/mL against E. coli, S. aureus, and
C. albicans, they can potentially be used as decent antidiabetic and
antimicrobial materials with porous structures which could also be used
to encapsulate supportive therapeutic agents.

Blood coagulation is a complex process of interconnected and strin-
gently coordinated sequence of interactions between endothelium and
coagulation factors also called “coagulation cascade” that involves
intrinsic and extrinsic pathways [88]. Coagulation of blood is aimed to be
a locally initiated process in a controlled manner. Activation of coagu-
lation cascade in uncontrolled or undesired circumstances can lead to
intravascular thrombi formation and may cause adverse/fatal conse-
quences [83,88,89]. Due to complicated nature of reactions and ampli-
fication possibility in coagulation process even small alterations in
natural functioning of blood components e.g., by foreign particles may
stimulate coagulation [88,89]. In view of potential blood coagulative
effects of L-AA based Cu(II) MOFs. In assessment of potential blood
coagulative effects of L-AA based Cu(II) MOFs, in vitro blood clotting
assay was conducted, and the results were given in Fig. 6 (b). As can be
seen therefrom, blood clotting indices of L-AA, and L-AA based Cu(II)
MOFs ranged from approximately 90 to 99% at 1 μg/mL concentrations
specifically blood clotting indices were found as 87.18% � 2.43, 89.31%
� 2.57, 99.91% � 4.02, 91.17%� 2.31, and 98.7%1 � 3.22 respectively
for bare L-AA, and L-AA-Cu(II)-A, L-AA-Cu(II)-C, L-AA-Cu(II)-N, and
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L-AA-Cu(II)-S MOFs, highlighting that they did not induce significant
coagulation in comparison to control group [53]. Consequently, from
hemocompatibility studies, L-AA based Cu(II) MOFs have revealed to be
non-hemolytic and non-coagulative at 1 μg/mL concentrations thus can
be considered as safe to come into contact with blood in terms of tested
parameters. However, further research should be devoted obtaining
safety dosage margins of these materials for in vivo applications.

4. Conclusion

L-AA based Cu(II)-A, -C, -N, and -S MOFs successfully synthesized in
this study with 40.5 � 2.1, 50.8 � 1.9, 40.2 � 1.6, and 36.8 � 1.3%,
gravimetric yields and specific surface areas of respectively 96.7 � 2.4,
89.8 � 3.1, 92.1 � 1.5 and 74.6 � 5.2 m2/g have shown to exert decent
biological utilization. Bio-MOFs were shown to be generated by coordi-
nation of Cu(II) ions and L-AA from its carboxylic acid groups and formed
rod-like assemblies with hexagonal crystallization patterns as revealed by
XRD analysis and computational modelling thereof. Antimicrobial ac-
tivity of Cu(II) ions [90] has been inherited into L-AA based Cu(II) MOFs,
hence are anticipated to be primary drivers of their antibacterial and
antifungal activity against E. coli ATCC 8739, S. aureus ATCC 6538,
C. albicans with the MIC values of as low as 0.63–1.25 mg/mL for bac-
terial and 1.25–2.50 mg/mL for fungal strains, respectively. Moreover,
L-AA amino acids found in the catalytic domain of α-Glucosidase enzyme
[73] has been presumed to be main cause of inhibitory activities of L-AA
based Cu(II) MOFs through interacting with Cu(II) ions in their structure.
However, more elaborate analyses should be committed to determine
exact mode of action underlying their inhibitory effects on α-Glucosidase
enzyme. Hemocompatibility of L-AA based Cu(II) MOFs assessed by in
vitro hemolysis and blood clotting assays suggest their safety at 1 μg/mL
concentration for applications involving direct contact with whole blood
e.g., hemodialysis, drug delivery, and so forth. However, a more detailed
analyses ought to be devoted on determining suitable dosage ranges
before intending implementation of L-AA based Cu(II) MOFs for in vivo
studies. As it is evidenced by the improvements in biomedicine, greener
energy applications, and industrial processes based in designing multi-
functional micro/nano interfaces, safe and green materials in from nat-
ural and sustainable source are of significant importance. In this context,
MOFs designed from natural biocompatible and renewable precursors,
holds great promise as porous and high surface interfaces with feasibility
to vast array of biomedical and industrial applications.
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