Seref, ElifÖzay, Özgür2025-01-272025-01-2720241060-13251520-5738https://doi.org/10.1080/10601325.2024.2393599https://hdl.handle.net/20.500.12428/24578In this study, hydrogels were synthesized using Prunus persica ev. Bayrami & ccedil; Beyaz & imath; extract as a crosslinker. N-3-(Dimethylamino)propyl methacrylamide (DMAPMA) and 2-Hydroxyethyl methacrylate (HEMA) monomers were used in hydrogels synthesized by redox polymerization. Hydrogel@Ag composites were created by synthesizing Ag-0 nanoparticles within hydrogel network structures cross-linked with plant extract using an in-situ green synthesis method. These hydrogels and composites were characterized by swelling, FTIR, TEM, XRD, TGA methods. The synthesized hydrogels and hydrogel@Ag composites were loaded with Naproxen and Cefazolin drugs. The in-vitro drug release profiles of the hydrogels were examined in a pH = 5.5 and PBS environment, and it was determined that approximately 75% of the drugs were released within 5 h. The release kinetics model for the hydrogels was the Higuchi model, followed by the Korsmeyer-Peppas model. Ag-0 nanoparticle encapsulation significantly affected the degree of swelling. The hydrogel cross-linked with MBA showed a swelling capacity of 370.16% by mass, while the hydrogel cross-linked with fruit extract exhibited a swelling capacity of 1000.78% by mass. The silver-encapsulated hydrogel demonstrated an even higher swelling capacity of 2313% by mass. Additionally, antibacterial tests against Staphylococcus aureus, Pseudomonas aeruginosa, and Enterococcus faecalis microorganisms, showed that Ag-free hydrogels did not exhibit antibacterial activity. [GRAPHICS] .eninfo:eu-repo/semantics/closedAccessHydrogelgreen synthesiswound dressingantibacteriel materialnanoparticleGreen synthesized silver nanoparticles based on N-3-(dimethylamino)propyl methacrylamide/2-hydroxyethyl methacrylate hydrogels for antibacterial wound dressing materialArticle61967569010.1080/10601325.2024.2393599N/AWOS:0012978752000012-s2.0-85201945783Q2