Beigmohammadi, Elif OzturkDemirel, Esra2025-01-272025-01-272016978-0-7354-1417-40094-243Xhttps://doi.org/10.1063/1.4959690https://hdl.handle.net/20.500.12428/214213rd International Conference on Analysis and Applied Mathematics (ICAAM) -- SEP 07-10, 2016 -- Almaty, KAZAKHSTANWe consider the Bitsadze-Samarskii type nonlocal boundary value problem {-d(2)v(t)/dt(2) + Bv(t) - h(t,v(t)), 0 < t < 1, v(0) = pi, v(1) = Sigma(J)(j=1) eta(j)v(lambda(j)) + xi, 0 < lambda(1) < ... < lambda(J) < 1 for a semilinear equation in a Hilbert space H with the self-adjoint positive definite operator B. For the approximate solution of problem (1), we use the first order of accuracy difference scheme. The numerical results are computed by MATLABeninfo:eu-repo/semantics/closedAccessSemilinear elliptic equationDifference schemeBitsadze-Samarskii type problemNumerical solution of a semilinear elliptic equation via difference schemeConference Object175910.1063/1.4959690N/AWOS:0003832230000732-s2.0-85000671313Q4