Sağbaş Suner, SelinŞahiner, MehtapAyyala, Ramesh S.Şahiner, Nurettin2025-01-272025-01-2720221999-4923https://doi.org/10.3390/pharmaceutics14081739https://hdl.handle.net/20.500.12428/25692Non-degradable, slightly degradable, and completely degradable micro/nanoparticles derived from chondroitin sulfate (CS) were synthesized through crosslinking reactions at 50%, 40%, and 20% mole ratios, respectively. The CS particles with a 20% crosslinking ratio show total degradation within 48 h, whereas 50% CS particles were highly stable for up to 240 h with only 7.0 +/- 2.8% weight loss in physiological conditions (pH 7.4, 37 degrees C). Tobramycin and amikacin antibiotics were encapsulated into non-degradable CS particles with high loading at 250 g/mg for the treatment of corneal bacterial ulcers. The highest release capacity of 92 +/- 2% was obtained for CS-Amikacin particles with sustainable and long-term release profiles. The antibacterial effects of CS particles loaded with 2.5 mg of antibiotic continued to render a prolonged release time of 240 h with 24 +/- 2 mm inhibition zones against Pseudomonas aeruginosa. Furthermore, as a carrier, CS particles significantly improved the compatibility of the antibiotics even at high particle concentrations of 1000 g/mL with a minimum of 71 +/- 7% fibroblast cell viability. In summary, the sustainable delivery of antibiotics and long-term treatment of bacterial keratitis were shown to be afforded by the design of tunable degradation ability of CS particles with improved biocompatibility for the encapsulated drugs.eninfo:eu-repo/semantics/openAccesschondroitin sulfateCS microgelsnanogelscontrolled degradationdrug deliverytobramycinamikacinPseudomonas keratitisDegradable and Non-Degradable Chondroitin Sulfate Particles with the Controlled Antibiotic Release for Bacterial InfectionsArticle14810.3390/pharmaceutics14081739Q1WOS:0008457844000012-s2.0-8513740886936015365Q1