Constructing $k$-Slant Curves in Three Dimensional Euclidean Spaces

dc.contributor.authorCamcı, Çetin
dc.date.accessioned2025-05-29T05:37:08Z
dc.date.available2025-05-29T05:37:08Z
dc.date.issued2025
dc.departmentÇanakkale Onsekiz Mart Üniversitesi
dc.description.abstractHelices and constant procession curves are special examples of slant curves. However, there is no example of a $k$-slant curve for a positive integer $k\geq 2$ in three dimensional Euclidean spaces. Furthermore, the position vector of a $k$-slant curve for a positive integer $k\geq 2$ has not been known thus far. In this paper, we propose a method for constructing $k$-slant curves in three dimensional Euclidean spaces. We then show that spherical $k$-slant curves and $N_{k}$-constant procession curves can be derived from circles, for $k \in \mathbb{N}$, the set of all nonnegative integers. In addition, we provide a new proof of the spherical curve characterization and define a curve in the sphere called a spherical prime curve. Afterward, we apply $k$-slant curves to magnetic curves. Finally, we discuss the need for further research.
dc.identifier.doi10.53570/jnt.1647509
dc.identifier.endpage115
dc.identifier.issn2149-1402
dc.identifier.issue50
dc.identifier.startpage98
dc.identifier.urihttps://doi.org/10.53570/jnt.1647509
dc.identifier.urihttps://hdl.handle.net/20.500.12428/31617
dc.institutionauthorCamcı, Çetin
dc.language.isoen
dc.publisherNaim ÇAĞMAN
dc.relation.ispartofJournal of New Theory
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_DergiPark_20250529
dc.subjectGeneral helices
dc.subjectspherical curves
dc.subjectslant curves
dc.titleConstructing $k$-Slant Curves in Three Dimensional Euclidean Spaces
dc.typeResearch Article

Dosyalar

Koleksiyon