Advanced Search

Show simple item record

dc.contributor.authorİzgi, Burhaneddin
dc.contributor.authorÖzkaya, Murat
dc.contributor.authorÜre, Nazım Kemal
dc.contributor.authorPerc, Matjaž
dc.date.accessioned2023-10-30T07:22:03Z
dc.date.available2023-10-30T07:22:03Z
dc.date.issued2023en_US
dc.identifier.citationİzgi, B., Özkaya, M., Üre, N. K., & Perc, M. (2023). Machine learning driven extended matrix norm method for the solution of large-scale zero-sum matrix games. Journal of Computational Science, 68, 101997. https://doi.org/10.1016/j.jocs.2023.101997en_US
dc.identifier.issn1877-7503 / 1877-7511
dc.identifier.urihttps://doi.org/10.1016/j.jocs.2023.101997
dc.identifier.urihttps://hdl.handle.net/20.500.12428/4606
dc.description.abstractIn this paper, we develop a novel machine learning-driven framework for solving large-scale zero-sum matrix games by exploiting patterns discovered from the offline extended matrix norm method. Modern game theoretic tools such as the extended matrix norm method allow rapid estimation of the game values for small-scale zero-sum games by computing norms of the payoff matrix. However, as the number of strategies in the game increases, obtaining an accurate value estimation through the extended matrix norm method becomes more difficult. In this work, we propose a novel neural network architecture for large-scale zero-sum matrix games, which takes the estimations of the extended matrix norm method and payoff matrix as inputs, and provides a rapid estimation of the game value as the output. The proposed architecture is trained over various random zero-sum games of different dimensions. Results show that the developed framework can obtain accurate value predictions, with a less than 10% absolute relative error, for games with up to 50 strategies. Also of note, after the network is trained, solution predictions can be obtained in real-time, which makes the proposed method particularly useful for real-world applications.en_US
dc.language.isoengen_US
dc.publisherElsevier B.V.en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectApproximated solutionsen_US
dc.subjectEMN methoden_US
dc.subjectLarge-scale gamesen_US
dc.subjectMachine learningen_US
dc.subjectZero-sum gamesen_US
dc.titleMachine learning driven extended matrix norm method for the solution of large-scale zero-sum matrix gamesen_US
dc.typearticleen_US
dc.authorid0000-0001-7241-4710en_US
dc.relation.ispartofJournal of Computational Scienceen_US
dc.departmentFakülteler, Siyasal Bilgiler Fakültesi, İşletme Bölümüen_US
dc.identifier.volume68en_US
dc.institutionauthorÖzkaya, Murat
dc.identifier.doi10.1016/j.jocs.2023.101997en_US
dc.relation.tubitakinfo:eu-repo/grantAgreement/TUBITAK/SOBAG/121E394
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorwosidGVU-3753-2022en_US
dc.authorscopusid57203287222en_US
dc.identifier.wosqualityQ2en_US
dc.identifier.wosWOS:000970304600001en_US
dc.identifier.scopus2-s2.0-85151005386en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record