Advanced Search

Show simple item record

dc.contributor.authorMemiş, Samet
dc.contributor.authorEnginoğlu, Serdar
dc.contributor.authorErkan, Uğur
dc.date.accessioned2023-06-05T07:21:49Z
dc.date.available2023-06-05T07:21:49Z
dc.date.issued2022en_US
dc.identifier.citationMemiş, S., Enginoğlu, S., & Erkan, U. (2022). A classification method in machine learning based on soft decision-making via fuzzy parameterized fuzzy soft matrices. Soft Computing, 26(3), 1165-1180. doi:10.1007/s00500-021-06553-zen_US
dc.identifier.issn1432-7643 / 1433-7479
dc.identifier.urihttps://doi.org/10.1007/s00500-021-06553-z
dc.identifier.urihttps://hdl.handle.net/20.500.12428/4230
dc.description.abstractFuzzy parameterized fuzzy soft matrices (fpfs-matrices) which can model problems involving fuzzy objects and parameters are one of the mathematical tools used to deal with decision-making problems. To utilize soft decision-making methods via fpfs-matrices in machine learning is likely to draw much scholarly attention. In this paper, we propose Comparison Matrix-Based Fuzzy Parameterized Fuzzy Soft Classifier (FPFS-CMC) in order to transfer modeling success of fpfs-matrices to machine learning. We then compare FPFS-CMC with Fuzzy Soft Set Classifier (FSSC), FussCyier, Fuzzy Soft Set Classification Using Hamming Distance (HDFSSC), and Fuzzy k-Nearest Neighbor (Fuzzy kNN) in consideration of accuracy, precision, recall, macro-F-score, and micro-F-score performance metrics, and 15 datasets in UCI Machine Learning Repository. Besides, we compare the proposed classifier with the state-of-the-art Support Vector Machine (SVM), Decision Tree (DT), and Adaptive Boosting (AdaBoost) in terms of five performance metrics herein. Afterward, the results from the experiments are analyzed by employing the Friedman and Nemenyi tests to assess the statistical significance of the differences in performances. Both experimental and statistical results show that FPFS-CMC outperforms the others. Finally, we provide the conclusive remarks and some suggestions for further research.en_US
dc.language.isoengen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectData classificationen_US
dc.subjectFpfs-matricesen_US
dc.subjectFuzzy setsen_US
dc.subjectSoft decision-makingen_US
dc.subjectSoft setsen_US
dc.subjectSupervised learningen_US
dc.titleA classification method in machine learning based on soft decision-making via fuzzy parameterized fuzzy soft matricesen_US
dc.typearticleen_US
dc.authorid0000-0002-7188-9893en_US
dc.relation.ispartofSoft Computingen_US
dc.departmentFakülteler, Fen Fakültesi, Matematik Bölümüen_US
dc.identifier.volume26en_US
dc.identifier.issue3en_US
dc.identifier.startpage1165en_US
dc.identifier.endpage1180en_US
dc.institutionauthorEnginoğlu, Serdar
dc.identifier.doi10.1007/s00500-021-06553-zen_US
dc.relation.tubitakinfo:eu-repo/grantAgreement/TUBITAK/SOBAG/1649B031905299
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorwosidK-1181-2012en_US
dc.authorscopusid35772373300en_US
dc.identifier.wosWOS:000723515100005en_US
dc.identifier.scopus2-s2.0-85120035497en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record