

T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ LİSANSÜSTÜ EĞİTİM ENSTİTÜSÜ

İNŞAAT MÜHENDİSLİĞİ ANABİLİM DALI

BETONARME KOLONLARIN MOMENT-EĞRİLİK İLİŞKİLERİ

YÜKSEK LİSANS TEZİ

SHAHWALİ BARAK

Tez Danışmanı PROF. DR. HASAN ORHUN KÖKSAL

ÇANAKKALE – 2023

T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ LİSANSÜSTÜ EĞİTİM ENSTİTÜSÜ

İNŞAAT MÜHENDİSLİĞİ ANABİLİM DALI

BETONARME KOLONLARIN MOMENT-EĞRİLİK İLİŞKİLERİ

YÜKSEK LİSANS TEZİ

SHAHWALİ BARAK

Tez Danışmanı PROF. DR. HASAN ORHUN KÖKSAL

 $\c CANAKKALE-2023$

T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ LİSANSÜSTÜ EĞİTİM ENSTİTÜSÜ

Shahwali BARAK tarafından Prof. Dr. Hasan Orhun KÖKSAL yönetiminde hazırlanan ve 26/01/2023 tarihinde aşağıdaki jüri karşısında sunulan "Betonarme Kolonların Moment-Eğrilik İlişkileri" başlıklı çalışma, Çanakkale Onsekiz Mart Üniversitesi Lisansüstü Eğitim Enstitüsü İnşaat Mühendisliği Anabilim Dalı'nda YÜKSEK LİSANS TEZİ olarak oy birliği ile kabul edilmiştir.

Jüri Üyeleri	İmza
Prof. Dr. Hasan Orhun KÖKSAL	
(Danışman)	
Prof. Dr. Kanat Burak BOZDOĞAN	
Dr. Öğr. Üyesi Erdinç KESKİN	

Tez No	:
Tez Savunma Tarihi	: 26/01/2023

.....

Doç. Dr. Yener PAZARCIK Enstitü Müdürü

26/01/2023

ETİK BEYAN

Çanakkale Onsekiz Mart Üniversitesi Lisansüstü Eğitim Enstitüsü Tez Yazım Kuralları'na uygun olarak hazırladığım bu tez çalışmasında; tez içinde sunduğum verileri, bilgileri ve dokümanları akademik ve etik kurallar çerçevesinde elde ettiğimi, tüm bilgi, belge, değerlendirme ve sonuçları bilimsel etik ve ahlak kurallarına uygun olarak sunduğumu, tez çalışmasında yararlandığım eserlerin tümüne uygun atıfta bulunarak kaynak gösterdiğimi, kullanılan verilerde herhangi bir değişiklik yapmadığımı, bu tezde sunduğum çalışmanın özgün olduğunu, bildirir, aksi bir durumda aleyhime doğabilecek tüm hak kayıplarını kabullendiğimi taahhüt ve beyan ederim.

Shahwali BARAK 26/01/2023

TEŞEKKÜR

Hazırlamış olduğum bu tez çalışmasında, süreç boyunca benden bir an olsun yardımlarını esirgemeyen saygı değer akademik danışman hocam Prof. Dr. Hasan Orhun KÖKSAL'a, hayatımın her aşamasında bana destek olan başta babam Mohammad Wali BARAK ve annem Razia BARAK olmak üzere değerli aileme sonsuz teşekkürlerimi sunarım.

> Shahwali BARAK Çanakkale, Ocak 2023

ÖZET

BETONARME KOLONLARIN MOMENT-EĞRİLİK İLİŞKİLERİ

Shahwali BARAK Çanakkale Onsekiz Mart Üniversitesi Lisansüstü Eğitim Enstitüsü İnşaat Mühendisliği Anabilim Dalı Yüksek Lisans Tezi Danışman: Prof. Dr. Hasan Orhun KÖKSAL 26/01/2023, 110

Betonarme kolon davranışının anlaşılabilmesi için betonun çok eksenli gerilmeler altındaki davranışının iyi bilinmesi gerekmektedir. Kesit davranışı ise, tasarım açısından moment-eğrilik ilişkisi üzerinden ifade edilerek kullanılabilir. Bu çalışmada, Türkiye Bina Deprem Yönetmeliği'nde yer alan ve Mander vd., tarafından kuşatılmış betonarme kolon davranışı için geliştirilen, boyuna ve enine donatı oranları ile beton karakteristik basınç dayanımı gibi temel parametreleri dikkate alan malzeme modeli kullanılarak kolonlar için eksenel yük altındaki moment-eğrilik ilişkileri incelenmiştir. İncelenen parametrelerin kolon davranışına etkileri, eğilme rijitliği, eğrilik sünekliği ve kesit dayanımı açısından değerlendirilmiştir.

Literatürde bulunan beton modelleri kronolojik sırayla; Hognestad beton modeli (1951), Kent ve Park beton modeli (1971), Sheikh ve Üzümeri beton modeli (1982), Geliştirilmiş Kent Park beton modeli (1971), Mander vd., beton modeli (1988), Saatçioğlu ve Razi beton modeli (1992)'dir. Bu beton modellerin den sadece Mander vd., (1988) beton modeli kuşatılmış beton modellenmesi için TBDY 2018'de kullanılmaktadır. Mander modeli için Fortran dilinde bir bilgisayar programı yazılarak kare kesitli 14 adet betonarme kolonun 8 farklı eksenel yük seviyesindeki moment eğrilik ilişkileri elde edilmiştir. Seçilen betonarme kolon kesitlerinin Mander metodu ile yanal kuşatıma basıncı göz önüne alınarak farklı eksenel yük, farklı etriye çapı ve aralığı değerleri için elde edilen moment-eğrilik grafikleri karşılaştırılmıştır. Kolon kesitindeki enine donatı çapı sabit tutulurken enine donatı aralığı arttıkça moment kapasitesinin azaldığı gözlemlenmiştir. Her ne kadar enine donatı

aralığının azaltılmasının moment kapasitesindeki artışları ihmal edilebilecek düzeyde olsa da bu aralığın süneklik üzerindeki büyük etkisi olduğu görülmüş ve tasarım yapılırken dikkate alınması performans analizleri açısından son derece önemli olacağı sonucuna varılmıştır.

Anahtar Kelimeler: Betonarme Kolon, Eksenel Kuvvet, Kuşatılmış Beton modelleri, Mander vd, Moment-eğrilik İlişkileri.

ABSTRACT

MOMENT CURVATURE RELATIONS OF REINFORCED CONCRETE COLUMNS

Shahwali BARAK Çanakkale Onsekiz Mart University School of Graduate Studies Master of Science Thesis in Civil Engineering Advisor: Prof. Dr. Hasan Orhun KÖKSAL 26/01/2023, 110

In order to fully understand reinforced concrete column behavior, it is multiaxial behavior be known well. The cross-sectional behavior can be obtained the most appropriately from moment-curvature relationship.

In this study, the constitutive model proposed by Mander et al. and adopted by TBDY 2018, which considers the longitudinal and transverse reinforcement ratios and compressive strength of confined concrete is used for the evaluation of the moment-curvature relations of the RC columns under axial loading. These parameters and their effects on the bending rigidity, ductility and strength of the RC columns are investigation.

The models of confined concrete in the literature are; Hognestad concrete model (1951), Kent and Park concrete model (1971), Sheikh and Uzumeri concrete model (1982), Modified Kent and Park concrete model (1982), Saatcioglu and Razvi concrete model (1992), Mander et al., (1988) concrete model. Mander et al, (1988) model is adopted for the modelling of confined concrete in TBDY 2018. For the Mander model, a computer program is written in Fortran language and the moment-curvature relationships of 14 square-section reinforced concrete columns at 8 different axial load levels are obtained. The moment-curvature graphs obtained for different axial load, different stirrup diameters and spacing levels are compared with the selected reinforced concrete column sections in the literature.

In the result obtained from the study, while the transverse reinforcement diameter in the column section is kept constant, it has been observed that the moment capacity slifhtly decreases as the transverse reinforcement spacing increases. Although the increase in the moment capacity due to the transverse reinforcement spacing is negligible, the significant increase on the ductility of the cross sections is observed and therefore, it is extremely important to consider the spacing for the performance analysis of structures, to be considered.

Keywords: Reinforced Concrete Column, Axial Load, Confined Concrete Models, Mander et al, Moment-curvature Relations.

İÇİNDEKİLER

Sayfa No

JÜRİ	ONAY SAYFASI	i
ETİK	BEYAN	ii
TEŞE	KKÜR	iii
ÖZET	٢	iv
ABST	TRACT	vi
İÇİNI	DEKİLER	viii
SİMG	ELER ve KISALTMALAR	х
TABI	LOLAR DİZİNİ	XV
ŞEKİ	LLER DİZİNİ	xvii
	BİRİNCİ BÖLÜM GİRİŞ	1
1.1.	Çalışmanın Amacı ve Kapsam	1
	İKİNCİ BÖLÜM KURAMSAL ÇERÇEVE/ÖNCEKİ ÇALIŞMALAR	3
2.1.	Çok Eksenli Basınç Altındaki Beton İçin Bünyesel Davranışı Modelleri	3
2.2.	Hognestad Beton Modeli	3
2.3.	Geliştirilmiş Kent ve Park Kuşatılmış ve Kuşatılmamış Beton Modeli	5
2.4.	Sheikh ve Üzümeri Beton Modeli	8
2.5.	Saatçioğlu ve Razvi Beton Modeli	10
	2.5.1. Kuşatılmış Beton Dayanımı	10
	2.5.2. Dairesel Kolon Kesitler	12
	2.5.3. Kare Kolon Kesitler	12
	2.5.4. Dikdörtgen Kolon Kesitler	15
2.6.	Mander Beton Modeli	18
2.7.	Koksal Beton Modeli	25
	ÜÇÜNCÜ BÖLÜM MOMENT-EĞRİLİK İLİŞKİLERİ VE TEORİK HESAP GİRİŞ	30
3.1.	Kesitin Eğriliği	30
3.2.	Moment-Eğrilik İlişkisinin Teorik Olarak Hesaplanması	33

	3.2.1.	Bir Betonarme Kiriş Kesit Grafik Üzerinde İncelenmesi	35
	3.2.2.	Moment-Eğrilik İlişkisinin Sayısal Olarak Hesaplanması	41
3.3.	Malzem	e Modelleri	47
	3.3.1.	Donatı Çeliği İçin Önerilen Modeli	47
3.4.	Analiz A	Aşamaları	48
3.5.	3.5. METP Programı Kullanılarak Üç Farklı Beton Modellerin, Moment-Eğrilik İlişkilerinin Karşılaştırılması		
	3.5.1.	Enine Donatı ve Sıklığının etkisi	51
		DÖRDÜNCÜ BÖLÜM SAYISAL UYGULAMALAR	63
	Momen	t-Eğrilik İlişkileri Kapsamında Farklı Özellikli Kolonların	63
4.1.	Karşılaş	stırılması	05
4.2.	METP v Hesapla	ve SEMAp Programı Kullanılarak Moment-Eğrilik İlişkilerinin	64
4.3.	Enine D	Oonatı Sıklığının ve Eksenel Kuvvet Etkisi	64
	4.3.1.	Kolon modellerinin Moment-Eğrilik ilişkileri karşılaştırılması	67
4.4.	Boyuna	donatı, Etriye Sıklığının ve Eksenel Kuvvet Etkisi	80
	4.4.1.	Kolon modellerinin Moment-Eğrilik ilişkileri karşılaştırılması	83
4.5.	Sabit Ek	csenel Kuvvet Altında, Boyuna Donatı ve Etriye Sıklığının Etkisi	96

4.5.1. Kolon Modellerinin Moment-Eğrilik İlişkileri Karşılaştırılması 98

BEŞİNCİ BÖLÜM SONUÇ ve ÖNERİLER

106

5.1.	Sonuçlar	106
KAYN	AKÇA	109
EKLEI	R	Ι
ÖZGE	ÇMİŞ	V

SİMGELER VE KISALTMALAR

A _{et}	Etkin kuşatılmış beton kesit alanı
Ack	Kabuk betonu şerit alanı
A _{shx}	x. yönündeki kuşatma donatısı toplam alanı
A _{shy}	y. yönündeki kuşatma donatısı toplam alanı
A _{sp}	Spiral kuşatma donatısı toplam alanı
Asi	i. donatı sırasındaki toplam boyuna donatı alanı
As	Betonarme kesitteki toplam boyuna donatı alanı
Ai	İ, şeritteki kuşatılmış betonun çekirdek alanı
A _{sü}	Çekirdek beton üst sıra donatı alanı
Aso	Çekirdek beton orta sıra donatı alanı
A _{sa}	Çekirdek beton alt sıra donatı alanı
bc	x. yöndeki çekirdek beton boyutu
b _{co}	Kesit genişliği yönündeki en dış kuşatma donatısı merkezleri
	arasındaki mesafe
b _k	Çekirdek betonunun küçük boyutu (Sargı donatısının merkezinden
	merkezine olan uzaklık)
b _{cx}	x. yönündeki çekirdek beton boyutu
b _{cy}	y. yönündeki çekirdek beton boyutu
c	Tarafsız eksen yeri
C30	Beton sınıfı
C1	Kolon tipi
ď	Paspay
d_s	Spiral kuşatma donatısının merkezleri arasındaki mesafe
d_c	Donatı merkezleri arasındaki mesafe
Е	Elastisite modülü
Ec	Betonun elastisite modülü
Es	Çeliğin elastisite modülü
Esec	Sekent elastisite modülü
EI	Kesitin eğilme rijitliği
$F_{s\ddot{u}}$	Kesittin üst donatıdaki etki eden kuvvet
F _{so}	Kesittin orta donatıdaki etki eden kuvvet

F _{sa}	Kesittin alt donatıdaki çekme kuvvet
<i>fcMax</i>	Kuşatılmış betonun basınç dayanımı
f_c	Betondaki basınç dayanımı
fco	Kuşatılmamış beton dayanımı
fywk	Sargı donatısının akma dayanımı
f_{yk}	Karakteristik çeliğin akma dayanımı
fsu	Çeliğin kopma gerilmesi
F_s	Enine donatı basınç veya çekme gerilmesi
f_{ι}	Hidrostatik basınç altındaki gerilme
f_{yt}	Çeliğin akma dayanımı
$f_{\iota e}$	Etkin yanal basıncı
f_t	Beton tasarım eksenel çekme dayanımı
Н	y. yönündeki kolon kesit boyutu
Н	Kiriş kesit
h_{co}	Kesit yüksekliği yönündeki en dış kuşatma donatısı merkezleri
	arasında olan mesafe
h_c	Kesit yüksekliği yönündeki en dış kuşatma donatısı dıştan dışa
	arasında olan mesafe
Ι	Atalet moment
$I_{arphi \ddot{o}}$	Betonarme kiriş elemanın çatlamadan önceki atalet moment
$I_{\varsigma s}$	Betonarme kiriş elemanın çatladıktan sonraki atalet moment
i	Donati sirasi
K	Düzeltme katsayısı
K_0	Düzeltme katsayısı
k_1	Beton karışımına ve yanal basınca bağlı kat sayıları
k_2	Beton karışımına ve yanal basınca bağlı kat sayıları
k_{2x}	Yatay yönündeki azaltma katsayı
k_{2y}	Düşey yönündeki azaltma katsayı
ke	Dikdörtgen kesitler için kuşatma etkinlik katsayısı
Mçö	Betonarme kiriş elemanın çalamadan önceki moment
M_{cs}	Betonarme kiriş elemanın çatladıktan sonraki moment
M_y	Betonarme kiriş elemanın çelik aktığı andaki moment
m	y. yönündeki ayaklarının sayısı

N	Eksenel yük
ns	Kolondaki boyuna donatı sayısı
n	x. yönündeki ayaklarının sayısı
Noc	Eksenel düzey etkisi
Р	Basınç kuvvet
q	Ortogonal yönlerden yönlerden birindeki enine donatı ayakların sayısı
r	Beton kesitteki elastisite ve sekant elastisite modüllerine bağlı olarak
	bir fonksiyon
S	Kuşatma donatısı konma mesafesi
Si	İ'ninci donatı sırasındaki toplam çekme veya basınç kuvveti
S_1	Komşu iki boyuna donatı orta noktaların arasındaki büyük mesafe
S'	Kuşatma donatıları arasındaki temiz mesafe
s	Sargı aralığı
Wi	İki komşu boyuna donatı arasındaki temiz mesafe
X	Beton birim deformasyonu bağlı bir fonksiyon
<i>y</i>	Betonarme kiriş elemanın ağrılık merkezi
у	Etkin kuşatılmış beton alanın eğrinin maksimum değeri
Zc	Kuşatılmış betona ait gerilme-birim ş kısalma eğrisinin doğrusal eğimi
Zu	Kuşatılmamış betona ait gerilme-birim kısalma eğrisinin doğrusal eğimi
sinα	Kuşatma donatısının doğrultusu ile kesitin kenar doğrultusu arasındaki olan açı
ε _{co}	Kuşatılmamış betonda maksimum dayanıma karşılık gelen birim kısalma
EcMax	Kuşatılmış betonda maksimum dayanıma karşılık gelen birim kısalma
80	Betonun basınç dayanımına ulaştığı andaki birim kısalma
ε _{çö}	Betonarme kiriş elemanın çatlamadan önceki birim kısalma
ε _{ct}	Betonarme kiriş elemanın çelik atığı andaki birim kısalma
ε _{cu}	Betondaki en büyük birim kısalma
ε _c	Betondaki en büyük gerilmeye karşılık gelen birim kısalma
E50h	Kuşatma etkisi ile betona gelen süneklik
EcMax20	Kuşatılmış beton dayanımının %20'sine karşılık gelen birim kısalma

E 50u	Kuşatılmış beton dayanımının %50'sine karşılık gelen birim kısalma
Eco1	Kuşatılmış betonun maksimum basınç dayanımı karşılık gelen birim
	kısalma
EcMax85	Kuşatılmış beton dayanımının %85'sine karşılık gelen birim kısalma
Esu	Donatı çeliğinde kopma birim kısalma
ε _s	Donatıdaki birim kısalma
ε _{cm}	Betonarme kesit en dış lifindeki birim kısalma
φ	Donatı çapı
κ	Eleman eğriliği (elemanın birim uzunluğundaki dönme)
κ _{çö}	Betonarme kiriş elemanın çatlamadan önceki eğrilik
κ _{çs}	Betonarme kiriş elemanın çatladıktan sonraki eğrilik
κ _y	Betonarme kiriş elemanın çelik aktığı andaki eğrilik
λ	Kuşatılmış beton alanını tanımlayan eğrinin başlangıç eğiminin açısı
σ _c	Kuşatılmış beton alanının çekirdek alanına oranı
σι	Tek ekseni yönündeki gerilme
σ2	İki ekseni yönündeki gerilme
σ3	Üç ekseni yönündeki gerilme
σ _{3e}	Eşdeğer kuşatma gerilmesi
σ _{3x}	x. yönündeki kuşatma gerilmesi
σ _{3y}	y. yönündeki eşdeğer kuşatma gerilmesi
σ _{3ex}	x. yönündeki eşdeğer kuşatma gerilmesi
σ _{3ey}	y. yönündeki eşdeğer kuşatma gerilmesi
σ'3x	x. yönündeki etkin kuşatma gerilmesi
σ'3y	y. yönündeki etkin kuşatma gerilmesi
ρ	Deviatorik uzunluk
ρ	Eğrilik yarıçapı
ρ_s	Kuşatma donatısının hacimsel oran
ρ _c	Deviatorik gerilme
ρ_{cc}	Boyuna donatı toplam alanının beton çekirdek alanına oranı
ρ_x	x. yönündeki kuşatma donatısının hacimsel oranı
ρ_y	y. yönündeki kuşatma donatısının hacimsel oranı

ξ	Hidrostatik uzunluğu
TS 500	Türk yönetmelik
TBDY 2018	Türkiye bina deprem yönetmeliği 2018
RC	Reinforced concrete
AM	Ağrılık markize
TE	Tarafsız eksen
METP	Moment-eğrilik tez programı
SEMAp	Sargı etkisi modelleme analiz programı

TABLOLAR DİZİNİ

Tablo No	Tablo Adı	Sayfa No
Tablo 1	Tarafsız eksen derinliği c hesaplanması	39
Tablo 2	Kiriş kesit Özellikleri	42
Tablo 3	Kiriş kesit malzeme özellikleri	42
Tablo 4	Sayısal örnekten elde edilen moment-eğrilik değerleri	46
Tablo 5	Betonarme kolonların malzeme karakteristik özellikleri	51
Tablo 6	Kolon Kesit Boyutları	51
Tablo 7	Analizlerden elde edilen sonuçları	52
Tablo 8	Betonarme C1 kolonu malzeme özellikleri	53
Tablo 9	Betonarme C1 kolonu malzeme özellikleri	54
Tablo 10	Betonarme C2 kolonu malzeme özellikleri	55
Tablo 11	Betonarme C3 kolonu malzeme özellikleri	56
Tablo 12	Betonarme C4 kolonu malzeme özellikleri	57
Tablo 13	Betonarme C5 kolonu malzeme özellikleri	58
Tablo 14	Betonarme C6 kolonu malzeme özellikleri	59
Tablo 15	Betonarme C7 kolonu malzeme özellikleri	60
Tablo 16	Betonarme kolonların malzeme karakteristik özellikleri	64
Tablo 17	Kolon kesit boyutları	65
Tablo 18	Betonarme C1 kolonu malzeme özellikleri	66
Tablo 19	Analizlerden elde edilen sonuçları	66
Tablo 20	Betonarme C2 kolonu malzeme özellikleri	68
Tablo 21	Analizlerden elde edilen sonuçları	68
Tablo 22	Betonarme C3 kolonu malzeme özellikleri	70
Tablo 23	Analizlerden elde edilen sonuçları	70
Tablo 24	Betonarme C4 kolonu malzeme özellikleri	72

Tablo 25	Analizlerden elde edilen sonuçları	72
Tablo 26	Betonarme C5 kolonu malzeme özellikleri	74
Tablo 27	Analizlerden elde edilen sonuçları	74
Tablo 28	Betonarme C6 kolonu malzeme özellikleri	76
Tablo 29	Analizlerden elde edilen sonuçları	76
Tablo 30	Betonarme C7 kolonu malzeme özellikleri	78
Tablo 31	Analizlerden elde edilen sonuçları	78
Tablo 32	Betonarme kolonların malzeme karakteristik özellikleri	80
Tablo 33	Kolon kesit boyutları	81
Tablo 34	Betonarme C8 kolonu malzeme özellikleri	82
Tablo 35	Analizlerden elde edilen sonuçları	82
Tablo 36	Betonarme C9 kolonu malzeme özellikleri	84
Tablo 37	Analizlerden elde edilen sonuçları	84
Tablo 38	Betonarme C10 kolonu malzeme özellikleri	86
Tablo 39	Analizlerden elde edilen sonuçları	86
Tablo 40	Betonarme C11 kolonu malzeme özellikleri	88
Tablo 41	Analizlerden elde edilen sonuçları	88
Tablo 42	Betonarme C12 kolonu malzeme özellikleri	90
Tablo 43	Analizlerden elde edilen sonuçları	90
Tablo 44	Betonarme C13 kolonu malzeme özellikleri	92
Tablo 45	Analizlerden elde edilen sonuçları	92
Tablo 46	Betonarme C14 kolonu malzeme özellikleri	94
Tablo 47	Analizlerden elde edilen sonuçları	94
Tablo 48	Kolon kesit boyutları	96
Tablo 49	Sabit eksenel kuvvet altın 7 adet betonarme kolonların kesit malzeme özellikleri	97

ŞEKİLLER DİZİNİ

Şekil No	Şekil Adı	Sayfa No
Şekil 1	Kuşatılmış beton için önerilen model (Hognestad, 1951)	4
Şekil 2	Beton modelinde gerilme-birim deformasyon ilişkileri (Kent ve Park, 1971)	5
Şekil 3	Geliştirilmiş Kent ve Park kuşatılmış ve kuşatılmamış beton modeli (Ersoy ve Özcebe, 1998)	6
Şekil 4	Sheikh ve Üzümeri kuşatılmış beton modeli (Ersoy ve Özcebe, 1998)	9
Şekil 5	Sheikh ve Üzümeri sargılı beton modeli (Saatçioğlu ve Razvi, 1992)	11
Şekil 6	Dairesel kesit için, düzgün yaylı basınç ve yatay gerilmenin hesabı için kuşatma donatısı akma gerilmesinin kullanması	12
Şekil 7	Kare kolonlarda yanal kuşatma basıncı dağılımları, kuşatma gerilmesinin oluşumu, kuşatma gerilmesinin farklı enine donatı düzeni için dağılımı (Saatçioğlu ve Razvi ,1992).	13
Şekil 8	Yanal kuşatma basıncının dağlımı, gerilmenin eleman yüksekliği boyunca dağılımı, gerçek ortalama ve eşdeğer kuşatma gerilmesi (Saatçioğlu ve Razvi, 1992)	14
Şekil 9	Dikdörtgen kolon kesitlerde kuşatma gerilmesinin dağılımı Saatçioğlu ve Razvi (1992)	15
Şekil 10	Saatçioğlu ve Razvi tarafından önerilen beton gerilme-birim deformasyon ilişkileri	18
Şekil 11	Kuşatılmış ve kuşatılmamış beton için Mander beton modeli (Mander vd., 1988)	20

Sekil 12	Fretli donatılı kesitlerde etkin olarak kuşatılmış beton alanı	22			
Şekii 12	(Mander vd. 1988)				
Şekil 13	Dikdörtgen enine donatı için etkin kuşatılmış çekirdek beton alanı	23			
Şekil 14	Kuşatılmış dikdörtgen kesitler için yanal kuşatma gerilmeleri ile	25			
	kuşatılmış beton dayanım hesabı (Mander vd., 1988)				
Şekil 15	 (a) Normal kuvvet ve eğilmeye etkisindeki bir betonarme kolonda (b) çift sıra donatı için (c) birim şekildeğiştirmeler ve (d) gerilme dağılışı 				
Sekil 16	Beton eleman çekme ve basınç durumu için moment-eğrilik	21			
Şekii 10	ilişkileri	31			
Şekil 17	Beton bir kirişte moment-eğrilik diyagramlarındaki karakteristik noktalar	32			
Şekil 18	Moment-eğrilik ilişkisinin teorik olarak hesaplanması	34			
Şekil 19	Betonarme kirişte moment-eğrilik ilişkisi	35			
Şekil 20	Betonarme kiriş kesit çatlamadan önceki dönüştürülmüş kesit	36			
Şekil 21	Betonarme kiriş kesit çatladıktan sonraki durumu	38			
Şekil 22	Betonarme kiriş kesitin çelik aktığı andaki durumu	39			
Şekil 23	Betonarme kiriş kesitinde çelik aktığı andaki ağrılık merkezi bulunması	40			
Şekil 24	Betonarme kiriş kesit	41			
Şekil 25	Betonarme kiriş kesit için moment-eğrilik ve betonun basınç altındaki gerilme-birim kısalma ilişkileri	41			
Şekil 26	Sayısal örnekten elde edilen moment-eğrilik ilişkileri	46			
Salvil 27	Doğal sertlikteki bir çelik için gerilme-birim şekil değiştirme	17			
Şekii 27	ilişkisi (Ersoy ve Özcebe, 1988)	4/			
Şekil 28	Teorik moment-eğrilik ilişkisinin tayini için katmanlı modelleme tekniği	48			
Şekil 29	Çekirdek beton ve donatı çeliği katmanlarındaki kuvvetlerin bulunuşu	49			
Şekil 30	Moment-eğrilik akış şeması	50			

Şekil 31	Betonarme Kolon Kesit	51
Şekil 32	Sabit eksenel kuvvet altında, üç farklı modellerin M – κ ilişkileri karşılaştırılması	53
Şekil 33	Sabit eksenel kuvvet altında, üç farklı modellerin M – κ ilişkileri karşılaştırılması	54
Şekil 34	Sabit eksenel kuvvet altında, üç farklı modellerin M – κ ilişkileri karşılaştırılması	55
Şekil 35	Sabit eksenel kuvvet altında, üç farklı modellerin M – κ ilişkileri karşılaştırılması	56
Şekil 36	Sabit eksenel kuvvet altında, üç farklı modellerin M – κ ilişkileri karşılaştırılması	57
Şekil 37	Sabit eksenel kuvvet altında, üç farklı modellerin M – κ ilişkileri karşılaştırılması	58
Şekil 38	Sabit eksenel kuvvet altında, üç farklı modellerin M – κ ilişkileri karşılaştırılması	59
Şekil 39	Sabit eksenel kuvvet altında, üç farklı modellerin M – κ ilişkileri karşılaştırılması	60
Şekil 40	Üç farklı modellerin analizlerden elde edilen ilk akma eğrilik değerleri	61
Şekil 41	Üç farklı modellerin analizlerden elde edilen ilk akma moment değerleri	62
Şekil 42	Betonarme Kolon Kesit	65
Şekil 43	SEMAp programında Mander beton modeli veri giriş	65
Şekil 44	SEMAp ve METP dan elde edilen moment-eğrilik ilişkileri karşılaştırılması	67
Şekil 45	SEMAp ve METP dan elde edilen moment-eğrilik ilişkileri karşılaştırılması	67
Şekil 46	SEMAp ve METP dan elde edilen moment-eğrilik ilişkileri karşılaştırılması	69
Şekil 47	SEMAp ve METP dan elde edilen moment-eğrilik ilişkileri karşılaştırılması	69
Şekil 48	SEMAp ve METP dan elde edilen moment-eğrilik ilişkileri karşılaştırılması	71

şılaştırılması	dan	elde	edilen	moment-eğrılık	ılışkıleri	71
MAp ve METP şılaştırılması	dan	elde	edilen	moment-eğrilik	ilişkileri	73
MAp ve METP şılaştırılması	dan	elde	edilen	moment-eğrilik	ilişkileri	73
MAp ve METP şılaştırılması	dan	elde	edilen	moment-eğrilik	ilişkileri	75
MAp ve METP şılaştırılması	dan	elde	edilen	moment-eğrilik	ilişkileri	75
MAp ve METP şılaştırılması	dan	elde	edilen	moment-eğrilik	ilişkileri	77
MAp ve METP şılaştırılması	dan	elde	edilen	moment-eğrilik	ilişkileri	77
MAp ve METP şılaştırılması	dan	elde	edilen	moment-eğrilik	ilişkileri	79
MAp ve METP şılaştırılması	dan	elde	edilen	moment-eğrilik	ilişkileri	79
onarme Kolon Ko	esit					81
onarme Kolon Ko MAp programınd	esit a Ma	nder	beton n	nodeli veri giriş		81 81
onarme Kolon Ko MAp programınd MAp ve METP şılaştırılması	esit a Ma dan	nder elde	beton n edilen	nodeli veri giriş moment-eğrilik	ilişkileri	81 81 83
onarme Kolon Ko MAp programınd MAp ve METP şılaştırılması MAp ve METP şılaştırılması	esit a Ma dan dan	elde elde	beton n edilen edilen	nodeli veri giriş moment-eğrilik moment-eğrilik	ilişkileri ilişkileri	81818383
onarme Kolon Ko MAp programınd MAp ve METP şılaştırılması MAp ve METP şılaştırılması MAp ve METP şılaştırılması	esit a Ma dan dan dan	elde elde elde	beton n edilen edilen edilen	nodeli veri giriş moment-eğrilik moment-eğrilik moment-eğrilik	ilişkileri ilişkileri ilişkileri	8181838385
onarme Kolon Ko MAp programınd MAp ve METP şılaştırılması MAp ve METP şılaştırılması MAp ve METP şılaştırılması MAp ve METP ı şılaştırılması	esit a Ma dan dan dan n dar	elde elde elde elde	beton n edilen edilen edilen	nodeli veri giriş moment-eğrilik moment-eğrilik moment-eğrilik moment-eğrilik	ilişkileri ilişkileri ilişkileri ilişkileri	 81 81 83 83 85 85
onarme Kolon Ko MAp programınd MAp ve METP şılaştırılması MAp ve METP şılaştırılması MAp ve METP şılaştırılması MAp ve METP ı şılaştırılması	esit a Ma dan dan dan n dar dan	nder elde elde elde n elde elde	beton n edilen edilen edilen edilen edilen	nodeli veri giriş moment-eğrilik moment-eğrilik moment-eğrilik moment-eğrilik	ilişkileri ilişkileri ilişkileri ilişkileri	 81 81 83 83 85 85 87
onarme Kolon Ko MAp programınd MAp ve METP şılaştırılması MAp ve METP şılaştırılması MAp ve METP şılaştırılması MAp ve METP ı şılaştırılması MAp ve METP şılaştırılması	esit a Ma dan dan dan n dar dan dan	nder elde elde elde elde elde	beton n edilen edilen edilen edilen edilen	nodeli veri giriş moment-eğrilik moment-eğrilik moment-eğrilik moment-eğrilik moment-eğrilik	ilişkileri ilişkileri ilişkileri ilişkileri ilişkileri	 81 83 83 85 85 87 87
	MAp ve METP şilaştırılması MAp ve METP şilaştırılması MAp ve METP şilaştırılması MAp ve METP şilaştırılması MAp ve METP şilaştırılması MAp ve METP şilaştırılması MAp ve METP şilaştırılması MAp ve METP şilaştırılması	MAp ve METP dan şılaştırılması MAp ve METP dan şılaştırılması MAp ve METP dan şılaştırılması MAp ve METP dan şılaştırılması MAp ve METP dan şılaştırılması MAp ve METP dan şılaştırılması MAp ve METP dan şılaştırılması	MAp ve METP dan elde şilaştırılması MAp ve METP dan elde şilaştırılması MAp ve METP dan elde şilaştırılması MAp ve METP dan elde şilaştırılması MAp ve METP dan elde şilaştırılması MAp ve METP dan elde şilaştırılması MAp ve METP dan elde şilaştırılması MAp ve METP dan elde şilaştırılması	MAp ve METP dan elde edilen şılaştırılması MAp ve METP dan elde edilen şılaştırılması MAp ve METP dan elde edilen şılaştırılması MAp ve METP dan elde edilen şılaştırılması MAp ve METP dan elde edilen şılaştırılması MAp ve METP dan elde edilen şılaştırılması MAp ve METP dan elde edilen şılaştırılması MAp ve METP dan elde edilen şılaştırılması	MAp ve METP dan elde edilen moment-eğrilik şılaştırılması MAp ve METP dan elde edilen moment-eğrilik şılaştırılması MAp ve METP dan elde edilen moment-eğrilik şılaştırılması MAp ve METP dan elde edilen moment-eğrilik şılaştırılması MAp ve METP dan elde edilen moment-eğrilik şılaştırılması MAp ve METP dan elde edilen moment-eğrilik şılaştırılması MAp ve METP dan elde edilen moment-eğrilik şılaştırılması MAp ve METP dan elde edilen moment-eğrilik şılaştırılması	MAp ve METP dan elde edilen moment-eğrilik ilişkileri şılaştırılması MAp ve METP dan elde edilen moment-eğrilik ilişkileri şılaştırılması MAp ve METP dan elde edilen moment-eğrilik ilişkileri şılaştırılması MAp ve METP dan elde edilen moment-eğrilik ilişkileri şılaştırılması MAp ve METP dan elde edilen moment-eğrilik ilişkileri şılaştırılması MAp ve METP dan elde edilen moment-eğrilik ilişkileri şılaştırılması MAp ve METP dan elde edilen moment-eğrilik ilişkileri şılaştırılması MAp ve METP dan elde edilen moment-eğrilik ilişkileri şılaştırılması

Şekil 67	SEMAp ve METP dan elde edilen moment-eğrilik ilişkileri karşılaştırılması	89
Şekil 68	SEMAp ve METP dan elde edilen moment-eğrilik ilişkileri karşılaştırılması	91
Şekil 69	SEMAp ve METP dan elde edilen moment-eğrilik ilişkileri karşılaştırılması	91
Şekil 70	SEMAp ve METP dan elde edilen moment-eğrilik ilişkileri karşılaştırılması	93
Şekil 71	SEMAp ve METP dan elde edilen moment-eğrilik ilişkileri karşılaştırılması	93
Şekil 72	SEMAp ve METP dan elde edilen moment-eğrilik ilişkileri karşılaştırılması	95
Şekil 73	SEMAp ve METP dan elde edilen moment-eğrilik ilişkileri karşılaştırılması	95
Şekil 74	Betonarme Kare Kolon Kesit2	97
Şekil 75	Sabit eksenel kuvvet, etriye çapları ve aralıkları altında moment- eğrilik ilişkileri	98
Şekil 76	Sabit eksenel kuvvet, etriye çapları ve aralıkları altında moment- eğrilik ilişkileri	98
Şekil 77	Sabit eksenel kuvvet, etriye çapları ve aralıkları altında moment- eğrilik ilişkileri	99
Şekil 78	Sabit eksenel kuvvet, etriye çapları ve aralıkları altında moment- eğrilik ilişkileri	99
Şekil 79	Sabit eksenel kuvvet, etriye çapları ve aralıkları altında moment- eğrilik ilişkileri	100
Şekil 80	Sabit eksenel kuvvet, etriye çapları ve aralıkları altında moment- eğrilik ilişkileri	100
Şekil 81	Sabit eksenel kuvvet, etriye çapları ve aralıkları altında moment- eğrilik ilişkileri	101
Şekil 82	Sabit eksenel kuvvet, etriye çapları ve aralıkları altında moment- eğrilik ilişkileri	101
Şekil 83	Sabit eksenel kuvvet, etriye çapları ve aralıkları altında moment- eğrilik ilişkileri	102

Şekil 84	Sabit eksenel kuvvet, etriye çapları ve aralıkları altında moment- eğrilik ilişkileri	102
Şekil 85	Sabit eksenel kuvvet, etriye çapları ve aralıkları altında moment- eğrilik ilişkileri	103
Şekil 86	Sabit eksenel kuvvet, etriye çapları ve aralıkları altında moment- eğrilik ilişkileri	103
Şekil 87	Sabit eksenel kuvvet, etriye çapları ve aralıkları altında moment- eğrilik ilişkileri	104
Şekil 88	Sabit eksenel kuvvet, etriye çapları ve aralıkları altında moment- eğrilik ilişkileri	104

BİRİNCİBÖLÜM GİRİŞ

Eksenel yük etkisindeki betonarme bir taşıyıcı elemanın çerçeve sistemlerde bir çubuk eleman olarak modellenebilmesi, öncelikle kesit davranışının bilinmesi ve gerçekçi olarak tanımlanabilmesi ile mümkündür. Kesit davranışı ise eleman rijitliğini belirleyen malzeme özelliklerine ve kesit geometrisine bağlıdır. Eksenel yük ile birlikte eğilme altında da zorlanan bir betonarme elemanın davranışı ise en kapsamlı şekilde kesitin moment-eğrilik grafikleri üzerinden yorumlanabilir. Bu tasarım yaklaşımı, özellikle betonarme gibi elastik davranış sınırları ötesinde zorlanabilen ve doğrusal davranıştan önemli oranda sapmalar gösteren malzemelerin kullanıldığı taşıyıcı sistemlerin deprem etkisindeki performanslarının belirlenmesinde büyük bir önem taşımaktadır.

Betonarme kolonların moment-eğrilik ilişkilerinin belirlenmesi, enine donatılarla kuşatılmış beton davranışı için deneysel verilerle uyumlu bir bünyesel modelin kullanılması ile mümkündür. 1950'li yıllardan başlayarak değişen malzeme kalitesine bağlı olarak kuşatılmış ve kuşatılmamış beton için çok sayıda bünyesel bağıntı önerilegelmiştir (Hognestad 1951, Kent ve Park 1971, Sheikh ve Üzümeri 1982, Geliştirilmiş Kent ve Park 1982, Mander vd. 1988, Razvi 1992). Bu çalışmada, TBDY 2018'de yer alan tek model olduğu için Mander kuşatılmış beton modeli kullanılmıştır. Kuşatılmış beton, boyuna doğrultuda uygulanan basınç ile birlikte yanal doğrultuda betonun Poisson oranı ile ifade edilebilecek şekilde genleşmeye çalışır. Enine donatılar tarafından beton çekirdeğine uygulanan yanal kuşatma basıncı, genleşme hareketini ve bu doğrultularda çekme çatlaklarının oluşumunu engelleyerek betonun eksenel yük ve buna paralel olarak şekil değiştirme kapasitesini arttırır. Bu nedenle yapıların deprem performansının belirlenmesinde kullanılacak moment-eğrilik ilişkilerinin gerçeğe yakınlığı, betonarme yapı tasarımının güvenirliğini arttıracaktır.

1.1. Çalışmanın Amacı ve Kapsamı

Betonarme yapının sismik tasarımında elasto-plastik davranışı yansıtmak için yerdeğiştirme tabanlı yöntemler geliştirilmektedir. Bu yöntemler, betonarme elemanların kırılmaya kadar deformasyon kapasitelerini belirlemek için moment-eğrilik ilişkisini ele alır. Bir betonarme kolonun moment-eğrilik ilişkileri, eğrilerin artışları sağlayan çeşitli eksenel yük seviyeleri altında belirlenebilir. Bu nedenle, beton ve çelik için gerçekçi gerilme-birim deformasyon modellerine, tüm kesit boyunca denge denklemlerini sağlaması ihtiyaç duyulur. Kuşatılmış basıncının, beton çekirdeğin deformasyon özelliği üzerindeki güçlü bağımlılığını vurgulamak da önemlidir. Eksenel yükler altında betonun yanal genleşmesinin, betonun basınç dayanımı arttıkça azaldığı gözlemlenmiştir. Bu nedenle, öncelikle etkili yanal sınırlamanın belirlenmesine önem verilmektedir.

Bu tez kapsamında, betonarme kolon kesittin eğrilik sünekliği ve sünekliği etkileyen parametrelerin araştırılması amaçlanmıştır. Bu bağlamda sargı etkisini etkileyen parametreler göz önüne alınarak, kuşatılmış beton modelleri literatürdeki çalışmalarından alınarak incelenmiştir. Betonarme kolonlardaki sünekliği araştırmak üzere METP ve SEMAp programından yararlanılarak incelenmiştir. METP ve SEMAp programında 112 adet kolon kesitlerinin, değişik parametreler etkisinde, moment-eğrilik eğrilerinden yararlanarak sünekliği değerleri elde edilmiştir. Elde edilen sonuçaları karşılaştırılmıştır.

Literatürde bulunan beton modelleri, moment-eğrilik ilişkileri araştırmak amacıyla üç tane farklı beton modelleri seçilmiş olup moment-eğrilik eğrileri karşılaştırılmıştır. Dolaysıyla seçilen beton modelleri Köksal, Mander vd., ve Saatçioğlu ve Razvi beton modelleridir. Bu çalışma yanısıra SEMAp ve Fortran dilinde yazılan METP bir bilgisayar programını içeren bu çalışmada, kuşatılmış beton davranışı için Mander beton modeli kullanılmıştır. Mander modeli kullanılarak seçilen betonarme kolon kesitlerinin momenteğrilik ilişkileri, program yardımıyla farklı eksenel yük seviyeleri elde edilmiştir. Geliştirilen bilgisayar yazılımı, kabuk beton davranışını ihmal ederek sadece çekirdek betonunda doğrusal olmayan davranış ile çelik donatıdaki elasto-plastik malzeme kabulünü temel alan ve Mander beton modeline dayanan bir programdır.

İKİNCİ BÖLÜM KURAMSAL ÇERÇEVE/ÖNCEKİ ÇALIŞMALAR

2.1. Çok Eksenli Basınç Altındaki Beton İçin Bünyesel Davranış Modelleri

Betonun eksenel basınç altındaki davranışı, çok sayıda değişkene bağlıdır. Bu değişkenlerden en önemlisi yanal donatının uyguladığı sargı etkisidir. Beton çekirdek üzerine uygulanacak etkili bir sargılama beton dayanımını yükseltmenin yansıra, betonun şekildeğiştirme kapasitesini de büyük ölçüde artıracaktır. Bu tür sargılama sonucu oluşacak yanal kuşatma etkisinin şekildeğiştirme kapasitesini geliştirmedeki başarısı eksenel basınç dayanımı üzerine olan olumlu etkisinden çok daha fazla olacaktır. Tarihsel olarak bu alandaki en bilinen çalışma Hognestad (1951) yılında geliştirilen Hognestad modeli olarak literatüre girmiştir.

2.2. Hognestad Beton Modeli

Hognestad tarafından kuşatılmamış beton için önerilen gerilme-birim kısalma modeli Şekil 1'de gösterilmiştir. Önerilen beton modeli birçok araştırmacı tarafından uzun yıllar boyunca benimsenmiş olmasına karşın sargı etkisini dikkate almaması en önemli eksikliğidir. Modelde, gerilme-birim deformasyon eğrisinin, maksimum gerilmeye ulaşana kadar 2. dereceden bir parabol, maksimum dayanımdan azalan kısmın ise doğrusal olduğu kabul edilmiştir. Maksimum gerilmeye karşılık gelen değer genelde karakteristik beton basınç dayanımının %85 olarak alınabilir ($f_{cMax} = 0.85f_{ck}$). Maksimum gerilmeye karşılık gelen birim deformasyon ise, $\varepsilon_{co} = 0.002$ olarak kabul edilmiştir. Hognestad tarafından önerilen modelde E_c elastisite modülü için Ersoy ve Özcebe tarafından önerilen (Hognestad,1951) aşağıdaki bağıntı kullanılabilir:

$$E_c = 12680 + 460 f_{cMax} (MPa) \tag{2.1}$$

veya

$$E_c = 126800 + 460 f_{cMax} (kgf/cm)^2$$
(2.2)

Şekil 1. Kuşatılmamış beton için önerilen model (Hognestad, 1951)

Eğrinin maksimum noktasına kadar olan kısım ise

$$\sigma_c = f_{cMax} \left[\frac{2\varepsilon_c}{\varepsilon_{co}} - \left(\frac{\varepsilon_c}{\varepsilon_{co}} \right)^2 \right]$$
(2.3)

bağıntısı ile verilmiştir. Kuşatılmamış en büyük veya nihai gerilmesine karşılık gelen ϵ_{co} birim deformasiyonu

$$\varepsilon_{co} = \frac{2f_{cMax}}{E_c} \tag{2.4}$$

olarak ifade etmişlerdir.

2.3. Geliştirilmiş Kent ve Park Kuşatılmış ve Kuşatılmamış Beton Modeli

Kent ve Park tarafından kuşatılmış ve kuşatılmamış beton için iki farklı model önermişlerdir. Şekil 2 ve 3'te her iki model, maksimum basınç dayanıma kadar 2. dereceden bir parabolüdür. Eğrinin maksimum noktasındaki gerilme ise f_{cMax} ile gösterir ve bunu karşılık gelen birim deformasyonu ise ε_{cMax} 'dır. Bu modelde birim deformasyon $\varepsilon_{cMax}=0.002$ 'ye geldiğinde gerilme düşmeye başlar ve bu durumunda eğrinin bu bölümü kuşatılmış ve kuşatılmamış beton için eğimleri farklı doğrularla ifade edilmiştir. Kuşatılmış betona ait eğrideki azalma eğimi, kuşatılmamış betona oranla daha küçüktür (Kent ve Park, 1971).

Şekil 2. Beton modelinde gerilme-birim kısalma ilişkileri (Kent ve Park, 1971)

Kent ve Park tarafından önerilen gerilme-birim kısalma eğrisi, dikdörtgen etriyelerle kuşatılmış beton içindir. Bu ilişki, mevcut deneysel verilerin analizi temelinde önerilmiştir. Bu model, önceki araştırmaların birçok özelliğini bünyesinde barındırır, ancak birçok araştırmacı dikdörtgen kesitlerle sınırlandırma nedeniyle beton dayanımında önemli bir artış gözlemse de kuşatılmış betonun dayanımında herhangi bir artış düşünülmemiştir. Bu varsayım, ihtiyatlı bir şekilde Roy ve Sözen (1964), test sonuçlarına dayandırılmıştır. Bu

sonuçları, kare kesitle sınırlandırma nedeniyle dayanımında önemli bir artış olmadığını görülmüştür.

Şekil 3. Geliştirilmiş Kent ve Park kuşatılmış ve kuşatılmamış beton modeli (Ersoy ve Özcebe, 1998)

Kent ve Park modelindeki, kuşatılmış ve kuşatılmamış betonun maksimum noktasına kadar özdeş olduğu varsayımı gerçekte doğru değildir. Ancak, sargısı az betonlar için bu varsayımın getireceği hata ihmal edilebilecek kadardır. Çok iyi kuşatılmış betonlarda ise bu hata kabul edilemez düzeydedir (Ersoy ve Özcebe, 1998). Bu nedenle, Scott, Park ve Priestly (1982), Kent ve Park beton hesap modelini, sargılı beton için Roy ve Sözen (1964) tarafından önerilen gerilme-birim kısalma ilişkisinden yararlanarak geliştirmişlerdir.

Parabolik Eğri:

Kuşatılmamış beton için parabolik eğri;

$$\sigma_c = f_{co} \left[\frac{2\varepsilon_c}{\varepsilon_{co}} - \left(\frac{\varepsilon_c}{\varepsilon_{co}} \right)^2 \right]$$
(2.5)

Kuşatılmış beton için parabolik eğri;

$$\sigma_c = f_{cMax} \left[\frac{2\varepsilon_c}{\varepsilon_{cMax}} - \left(\frac{\varepsilon_c}{\varepsilon_{cMax}} \right)^2 \right]$$
(2.6)

$$f_{cMax} = K f_{co} \tag{2.7}$$

$$\varepsilon_{cMax} = K\varepsilon_{co} \tag{2.8}$$

$$K = 1 + \frac{\rho_s f_{ywk}}{f_{co}} \tag{2.9}$$

Doğrusal Eğri:

Kuşatılmamış beton için, gerilmenin düşüldüğü doğrusal kısım eğri;

$$\sigma_c = f_{co} [1 - Z_u (\varepsilon_c - \varepsilon_{co})] \tag{2.10}$$

$$Z_u = \frac{0.5}{\varepsilon_{co50u} - \varepsilon_{co}} \tag{2.11}$$

$$\varepsilon_{co50u} = \frac{_{3+0.285f_{co}}}{_{142f_{co}-1000}} \ge \varepsilon_{co} \tag{2.12}$$

Kuşatılmış Beton için, gerilmenin düşüldüğü doğrusal kısım eğri;

$$\sigma_c = f_{cMax} [1 - Z_c (\varepsilon_c - \varepsilon_{cMax})] \ge 0.2 f_{co}$$
(2.13)

$$Z_c = \frac{0.5}{\varepsilon_{co50u} + \varepsilon_{50h} - \varepsilon_{cMax}}$$
(2.14)

$$\varepsilon_{50h} = 0.75 \rho_s \left(\frac{b_k}{s}\right)^{1/2} \tag{2.15}$$

Burada; f_{co} kuşatılmamış betonun basınç dayanımı, f_{cMax} kuşatılmış betonun basınç dayanımı, ε_{co} kuşatılmamış betonda maksimum dayanıma karşılık gelen birim kısalma, ε_{cMax} kuşatılmış betonda maksimum dayanıma karşılık gelen birim kısalma, b_k çekirdek beton küçük boyutu (Sargı donatısının dış kısmından dış kısmına olan mesafe), s sargı donatısı adım mesafesi, ρ_s sargı donatısının hacimsel oranı, Z_u kuşatılmamış betona ait σ – ε eğrisinin doğrusal bölümünün eğimi, Z_c kuşatılmış betona ait σ – ε eğrisinin doğrusal bölümünün eğimidir (Ersoy ve Özcebe, 2012).

2.4. Sheikh ve Üzümeri Beton Modeli

Bu modeli Sheikh ve Üzümeri, etkin olarak kuşatılmış beton alanın, çekirdek alanından daha az olduğu ve boyuna donatı dağılımı, sonuç olarak ortaya çıkan bağ konfigürasyonu ve bağların aralığı tarafından belirlendiği varsayımına dayalı olarak geliştirilmiştir. Geliştiren kuşatılmış beton modeli, bu modelde de geliştirilmiş Kent ve Park beton modelinde olduğu gibi kuşatma etkisiyle birlikte dayanımın arttığı varsayılmaktadır. Sheikh ve Üzümeri, önerilen modelde maksimum gerilme ulaşana kadar ikinci derece parabol olarak tanınan, gerilme ise maksimum değeri ulaştıktan sonra sabit bir gerilme altında deformasyon artışı meydana gelmekte ve iniş bölümü ise bir doğru ile ifade edilmektedir. Bu bağlam da Sheikh ve Üzümeri modeline ait gerilme-birim kısalma ilişkileri aşağıda Şekil 4'te verilmiştir (Sheikh ve Üzümeri, 1982).

Teorik analizde, çekirdek ve kabuk beton birim deformasyonu aynı olduğu ve enine donatı tarafından sağlanan sınırları çok az olduğu veya hiç olmadığı durumunda, her ikisindeki betonun aynı gerilme-birim deformasyon izlediği varsayılmaktadır. Doğrusal enine donatı tarafından üretilen beton dayanımı ile yanal kuşatma arasındaki ilişkisi aşağıdaki gibi ifade edilebilir (Sheikh ve Üzümeri, 1982).

$$\varepsilon_{cMax1} = 8K_o f_{co} \times 10^{-6} \tag{2.16}$$

$$f_{cMax} = K_o f_{co} \tag{2.17}$$

$$\varepsilon_{cMax2} = \varepsilon_{co} \left[1 + \frac{7.8}{a} \left(1 - 5 \left(\frac{s}{b_k} \right)^2 \right) \frac{\rho_s f_{ywk}}{\sqrt{f_{co}}} \right]$$
(2.18)

$$\varepsilon_{cMax85} = 0.225 \rho_s \sqrt{\frac{b_k}{s}} + \varepsilon_{cMax2}$$
(2.19)

$$K_o = 1 + 23 \frac{b_k^2}{N_{oc}} \left[\left(1 - \frac{n_s a^2}{5.5 b_k^2} \right) \left(1 - \frac{s}{2b_k} \right)^2 \right] \sqrt{\rho_s f_{ywk}}$$
(2.20)

Burada; a iki komşu boyuna donatı merkezleri arasındaki mesafe, A_{ck} kuşatılmış beton çekirdek alanı, A_s kolon kesitindeki toplam boyuna donatı oranı, b_k çekirdek betonunun küçük boyutu (Sargı donatısının merkezinden merkezine olan uzaklık), f_{co} kuşatılmamış betonun basınç dayanımı, f_{cMax} kuşatılmış betonun basınç dayanımı, f_{ywk} sargı donatısının akma dayanımı, n_s kolondaki boyuna donatı sayısı, ρ_s sargı donatısının hacimsel oranıdır (Ersoy ve Özcebe, 1998).

Kuşatılmış betonun dayanımdaki artış, çevre bağın merkez çizgisi tarafından sınırlanan alan temelinde hesaplanır ve bağ konfigürasyonu ve bağlantı aralığı ile belirlenir. Daha sonra, beton dayanımdaki artışı hesaplamak için etkili bir şekilde kuşatılmış beton alanı değerlendirilir (Sheikh ve Üzümeri, 1982).

2.5. Saatçioğlu ve Razvi Beton Modeli

Kuşatılmış beton, düz betondan daha farklı bir şekilde gerilme-birim kısalma özelliklerine sahiptir. Kuşatılmış betonun gerilme-birim kısalma tahmini birçok araştırmacı için ilgi çekici bir konusu olmuştur. Analitik modeller, genellikle belirli bir deney verileri dayalı olarak geliştirilmiştir. Bu modeller, birçok uygulamada daha iyi tahminler üretmelerine rağmen, kesit ve donatı düzenlemesi açısından sınırlamalara sahiptir (Saatçioğlu ve Razvi, 1991).

2.5.1. Kuşatılmış Beton Dayanımı

Saatçioğlu ve Razvi esas olarak kuşatılmış beton dayanımı, eksenel basıncı maruz kalan beton, tek eksenli bir gerilme durumundadır. Eksenel basınç altında ezilen beton, düşey çatlamaya neden olabilecek enine doğrultuda genişlemeye çalışır. Yanal kuşatma basınçları ve eksenel basıncın kombinasyonu aynı anda etkimesi sonucu üç eksenli gerilme hali oluşur. Kesitte etkiyen yanal kuşatma basıncı neden olduğu enine doğrultuda genişlemeye çalışan, ancak enine donatılar betonun bu genişleme eğilmene karşı koyarak, betonun artan dayanımıyla sonuçlanır. Saatçioğlu ve Razvi bu artış için Richard vd., (1928)'e benzer şekilde aşağıdaki bağıntıyı öngörülmüşlerdir.

$$f_{cMax} = f_{co} + k_1 \sigma_3 \tag{2.22}$$

$$k_1 = 6.7(\sigma_3)^{-0.17} \tag{2.23}$$

Denklem 2.22'de f_{cMax} kuşatılmış, f_{co} ise kuşatılmamış beton dayanımıdır. k_1 Katsayısının σ_3 yanal basıncına bağlı olarak değişimi en iyi deneysel verilere dayanılarak elde edilebilir. Şekil 5'te literatürde bulunan deney numunelerinin değişik yanal sıvı basınç seviyelerine göre değişimi göstermektedir. Şekilden de görüldüğü üzeri k_1 , yanal basıncın büyük değerleri için küçük ve daha da büyüyen yanal basınç sevilerinde ise sabitleşen değerler almaktadır. Şekilde 5'te verilen eşitlik deneysel verilerin istatiksel değerlendirilmesi sonucunda elde edilmiş olup k_1 katsayısının yanal basınç ile değişimini ifade etmektedir (Saatçioğlu ve Razvi, 1992).

$$\sigma_3 = k_2 f_i \tag{2.24}$$

$$\sigma_3 = \frac{\sum_{i=1}^q (A_s f_s \sin \alpha)_i}{sb_c} \tag{2.25}$$

Burada; σ_3 düzgün yaylı kuşatma basıncıdır.

Burada; q ortogonal yönlerden birindeki enine donatı ayaklarının sayısı, sb_c ise beton çekirdeğin boyutu ayağı sayısı, s ise yanal bağların düşey aralığıdır. f_1 ortalama yanal kuşatma basıncı, beton çekirdeğin her iki tarafına etki eden enine donatıdaki çekme kuvvetlerinin dikey bileşenlerinin sb_c olarak tanımlanan çekirdek yüzey alanına bölünmesi ve k₂ ile azaltılmasıyla hesaplanır, f_s ise enine donatı çekme dayanımıdır.

Şekil 5. Sheikh ve Üzümeri sargılı beton modeli (Saatçioğlu ve Razvi, 1992)

Bu eşitlikte, σ_3 MPa olarak düzgün yayılı kuşatma basıncıdır. Kuşatılmamış beton dayanımı f_{co}, k standart silindir deneyinden ile gerçek elemandaki basınç dayanımı arasında olan farkının yansıtan bir düzeltme katsayıdır. Bu bağlamda elde edilen değerden farklı olabilir. Bu nedenle, bu değerin kolon elemanın sahip olduğu özelliklere sahip numuneler ile yapılacak deneysel çalışma sonucunda tespit edilmesi en doğrusudur. Böyle bir verinin olmaması durumunda standart silindir numune deney sonuçları uygun görülecek bir düzeltme katsayısı dikkate alınarak kullanılabilir. Düzeltme katsayısı mevcut kaynaklarda (0.85) ile (1.0) arasında verilmektedir (Saatçioğlu ve Razvi, 1992).
2.5.2. Dairesel Kolon Kesitler

Denklem 2.26'te verilen kuşatılmış betonun dayanımının, enine donatılar tarafından uygulanan yatay basıncın düzgün yaylı kuşatma basıncının olması durum için geçerlidir. Düzgün yaylı yatay gerilme ise sık aralığı sargı donatılıları ile kuşatılmış dairesel kolon için kabul edilebilir. Bu yanal basınç Şekil 6'de gösterildiği gibi statikten hesaplanabilir (Saatçioğlu ve Razvi, 1992).

Şekil 6. Dairesel kesit için, düzgün yaylı basınç ve yatay gerilmenin hesabı için kuşatma donatısı akma gerilmesinin kullanması

$$f_{cMax} = f_{co} + (6.7\sigma_3^{-0.17})\sigma_3 \tag{2.26}$$

Burada; f_{cMax} kuşatılmış f_{co} kuşatılmamış beton dayanımıdır.

2.5.3. Kare Kolon Kesitler

Kare veya dikdörtgen tarafından uygulanan kuşatma basıncını belirlemek zordur. Bununla birlikte, Saatçioğlu ve Razvi malzeme ve geometrik özelliklerden başlayarak eşdeğer kuşatma basıncını dayalı olarak spiral kuşatma kolonlar için kullanılan hesap yöntemine benzer bir yaklaşım kullanmışlardır (Saatçioğlu ve Razvi, 1992).

Şekil 7. Kare kolonlarda yanal kuşatma basıncı dağılımları, kuşatma gerilmesinin oluşumu, kuşatma gerilmesinin farklı enine donatı düzeni için dağılımı (Saatçioğlu ve Razvi ,1992).

Kare kesitlerde kuşatma gerilmesi, enine donatılar tarafından uygulanacak kuşatma kuvvetine bağlı olarak değişmektedir. Kuşatma donatısı, yanal olarak desteklenmiş köşelerde yüksek yanal kuşatma kuvvetleri, yanal olarak desteklenmemiş yerlerde ise küçük kuşatma kuvvetleri meydana getirir. Köşelerdeki kuşatma kuvvetleri, kuşatma donatısına kesit alanına ve dayanımına bağlıdır. Bu durumda köşelerin arasında bu kuvvetler kuşatma donatısı desteklenmemiş uzunluğa bağlı olan kuşatma donatısı eğilme rijitliği ile ilişkilidir. Bu yüzden kuşatma donatısı akmaya başlayana kadar elastik rijitliği ile orantılıdır. Bu bağlamda eğilme rijitliği yüzünden meydana gelen kuşatma kuvvetleri, köşelerde meydana gelen kuşatma kuvvetleri ile kıyaslandığında çok düşük olmaktadır. Bu nedenle beton eksenel basınç altında yanal olarak genişledikçe, köşeden köşeye uzaktaki konumlara göre daha yüksek reaktif basınçlar oluşacaktır (Saatçioğlu ve Razvi, 1992).

Kuşatma etkisi kolonlarda üç boyutta gerçekleştirilen bir durum olduğu için kesitsel bir yüzeye indirgenemez. Bu nedenle, eleman uzunluğu boyunca yanal basıncın değişimlerinin de dikkate almak daha önemlidir. Bu bağlamda Şekil 7'de göstermektedir.

Şekil 8. Yanal kuşatma basıncının dağlımı, gerilmenin eleman yüksekliği boyunca dağılımı, gerçek ortalama ve eşdeğer kuşatma gerilmesi (Saatçioğlu ve Razvi, 1992)

Köşe noktalar arasında kuşatma donatısı yerleşme mesafesinin yakın olması, enine donatılar ile kuşatılmış kesitlerde boyuna kuşatma gerilmesi dağılımının düzgün doğrusal olduğu kabulü yapılabilmektedir. Bu yüzden boyuna donatıların basınç etkisi altında olduğuna ve enine donatıların sık aralıkları ile burkulmayı önlediğine dikkat çekmişterlerdir (Saatçioğlu ve Razvi, 1992).

Kare bir kolonda 4 adet boyuna donatı bulunması suretiyle kuşatma donatısının geniş aralıklı olması durumunda, kesit orta kısımlarındaki kuşatma basıncının azalması daha belirgin hale gelmekte ve kuşatma basıncının yayılışını eleman boyunca düzgün doğrusal olarak kabul etmek yanlış bir yaklaşım olmaktadır.

$$f_{cMax} = f_{co} + k_1 \sigma_{3e} \tag{2.27}$$

$$\sigma_{3e} = k_2 \sigma_3 \tag{2.28}$$

$$\sigma_3 = \frac{\sum A_s f_{ywk} \sin \alpha_1}{sb_{co}} \tag{2.29}$$

Burada; α_1 kuşatma donatısı ile b_{co} kalan açıdır. Eğer kuşatma donatısının doğrultusu b_{co}'ya dik olması durumunda $\alpha_1 = 90^0$ alabilmektedir.

$$k_1 = 6.7\sigma_{3e}^{-0.17} \tag{2.30}$$

$$k_2 = 0.26 \sqrt{\left(\frac{b_{co}}{s}\right) \left(\frac{b_{co}}{s_i}\right) \left(\frac{1}{\sigma_3}\right)} \le 1.0$$

$$(2.31)$$

2.5.4. Dikdörtgen Kolon Kesitler

Dikdörtgen kolon kesitler birbirine dik iki doğrultu boyunca farklı kuşatma donatılarına sahip olabilir. Bu da iki doğrultuda farklı kuşatma etkisi meydana getirir, uzun ve kısa kenarları boyunca farklı seviyelerde kuşatma basıncına yol açabilir, kesitin uzun kenarı boyunca etki eden basınç gerilmelerinden kısa kenardakileri göre kuşatma basıncı üzerinde daha etkili olduğunu ifade etmiştir. Her bir kenardaki kuşatma etkisi, dairesel ve kare kolonlarda kullanılan hesap yöntemleri kullanılarak hesaplanabilir (Saatçioğlu ve Razvi, 1992).

Şekil 9. Dikdörtgen kolon kesitlerde kuşatma gerilmesinin dağılımı (Saatçioğlu ve Razvi, 1992)

$$\sigma_{3e} = \frac{\sigma_{3ey}b_{co} + \sigma_{3ex}h_{co}}{b_{co} + h_{co}} \tag{2.32}$$

Burada; σ_{3ey} ve σ_{3ex} eşdeğer kuşatma gerilmeleridir.

$$k_{2x} = 0.26 \sqrt{\left(\frac{h_{co}}{s}\right) \left(\frac{h_{co}}{sl_x}\right) \left(\frac{1}{\sigma 3_x}\right)} \le 1.0$$
(2.33)

Burada; k_{2x} yatada azaltma katsayıdır.

$$k_{2y} = 0.26 \sqrt{\left(\frac{b_{co}}{s}\right) \left(\frac{b_{co}}{s\iota_y}\right) \left(\frac{1}{\sigma_{3y}}\right)} \le 1.0$$
(2.34)

Burada; ise, k_{2y} düşey de azaltma katsayı

$$\sigma_{3x} = \frac{\sum A_{shx} f_{ywk} \sin \alpha_1}{sh_{co}}$$
(2.35)

Burada; σ_{3x} yatay da kuşatma gerilmesidir.

$$\sigma_{3y} = \frac{\sum A_{shy} f_{ywk} \sin \alpha_1}{sb_{co}}$$
(2.36)

Burada ise, σ_{3y} düşey de kuşatma gerilme

$$f_s = E_s \left(0.0025 + 0.04 \sqrt[3]{\frac{k_2 p_c}{f_{co}}} \right) \le f_{yt}$$
(2.37)

Burada; $f_{yt}\;$ akma dayanımı ve genelde 1.400 MP olarak alınabilir.

$$\sigma_3 = \frac{\sigma_{3x}b_{cx} + \sigma_{3y}b_{cy}}{b_{cx} + b_{cy}} \tag{2.38}$$

Çekirdek beton boyutları b_{cx} , b_{cy} , ve σ_{3x} , σ_{3y} ise eşdeğer yanal basınclarıdır.

$$\varepsilon_{co1} = \varepsilon_0 (1 + 5k_3 K) \tag{2.39}$$

$$\varepsilon_{cMax85} = 260k_3p_c\varepsilon_{co1}[1+0.5k_2(k_4-1)] + \varepsilon_{085}$$
(2.40)

$$k_3 = \frac{40}{f_{co}} \le 1.0 \tag{2.41}$$

$$k_4 = \frac{f_{yt}}{500} \ge 1.0 \tag{2.42}$$

$$k_4 = \frac{f_{yt}}{500} \ge 1.0 \tag{2.43}$$

$$K = \frac{k_1 f_{le}}{f_{co}} \ge 1.0 \tag{2.44}$$

$$p_{c} = \frac{\sum_{i=1}^{n} (A_{shx})_{i} + \sum_{j=1}^{m} (A_{shy})_{j} + \sum_{i=1}^{m} (A_{shy})_{i} + \sum_{j=1}^{m} (A_{shy})_{j} + \sum_{i=1}^{m} (A_{shy})_{i} + \sum_{j=1}^{m} (A_{shy})_{i} + \sum_{j=1}^{m} (A_{shy})_{j} + \sum_{i=1}^{m} (A_{shy})_{i} + \sum_{j=1}^{m} (A_{shy})_{i} + \sum_{j=1}^{m} (A_{shy})_{i} + \sum_{j=1}^{m} (A_{shy})_{j} + \sum_{j=1}^{m} (A_{shy})_{j} + \sum_{i=1}^{m} (A_{shy})_{i} + \sum_{j=1}^{m} (A_{shy})_{i} + \sum_{j=1}^{m} (A_{shy})_{i} + \sum_{j=1}^{m} (A_{shy})_{j} + \sum_{j=1}^{m} (A_{sh$$

Burada; ise, n ve m değerleri sırasıyla x ve y yönlerindeki ayaklarının sayısı.

Saatçioğlu ve Razvi modeline göre dairesel kesitler için dairesel ve spiral kuşatma donatısının ve kolon boyuna donatısının ile beton çekirdek etrafında sağlayacak yanal kuşatma basıncı düzgün yayılı olarak kabul edilebilir. Saatçioğlu ve Razvi modeline göre kare kesitler için kuşatma beton basınç dayanımı, kesit kare olduğu durumlarda sargı donatısında eğilme deformasyonu hakim olduğunu söylenebilir. Bu yüzden köşelerde kuşatma etkisi belirginken, kuşatma donatısının açıklık ortasında azalır. Dairesel ve kare kesitler için kullanılan hesap yöntemi aynı zaman da dikdörtgen kolon elemanlarda da kullanılabilir. Dikdörtgen kesitle elemanlarda uzun kenara etkiyen kuşatma basıncı, kısa kenara etkiyen kuşatma basıncına göre beton dayanımı üzerinde daha çok etkili olmaktadır (Saatçioğlu ve Razvi,1992).

Şekil 10. Saatçioğlu ve Razvi tarafından önerilen beton gerilme-birim deformasyon ilişkileri

Kuşatılmış beton gerilme ilişkisi, betonun en büyük gerilme kadar bir doğru ile ifade edilmektedir. Kuşatılmış beton dayanımının %20'sinin sonrası kalıcı dayanım seviyesi olarak kabul edilmektedir. Saatçioğlu ve Razvi beton modeli, yanal kuşatma basıncının sıfır veya ihmal edilebilir bir değerde olması durumunda Hognestad (1951) tarafından önerilen kuşatılmamış beton modeli haline almaktadır (Saatçioğlu ve Razvi,1992).

2.6. Mander Beton Modeli

Mander tarafından önerilen beton modeli, kare, dikdörtgen ve dairesel kesitlerin, çevrimsel ve monotonik, statik ve dinamik yüklemeler altında kuşatılmış beton gerilmebirim deformasyonu davranışını belirlemek için geliştirilmiş bir beton modelidir. Bu modelde, dikdörtgen için çevresel, dairesel kuşatma donatısı ve iç etriye ile çiroz koşulları ele almıştır. Mander vd., önerilen beton modelinin kare, dairesel ve dikdörtgen kesitler için yaklaşık 40 adet kolon deneysel örnekleri ile karşılaştırarak göstermişlerdir (Mander vd., 1998).

Birçok araştırmacılar tarafından sabit hidrostatik basınç altında silindir numuneler üzerinde yapılan çalışmada, üç eksenli basınç deneylerinin sonuçları esesi olarak almışlardır.

dairesel ve dikdörtgen kesitlerin kuşatma etkisiyle birlikte, betonunun maksimum dayanımı ve buna karşılık gelen birim deformasyonun arttığı varsayılmaktadır. Monotonik olarak yüklenen betonda oluşacak gerilme aşağıdaki bağıntılar ile bulunabilir. Hidrostatik basınç ile kuşatılmış beton gerilme-birim deformasyonu basit bir şekilde aşağıdaki bağıntılarla ifade edilebilir (Mander vd., 1998).

$$f_{cMax} = f_{co} + k_1 f_l (2.46)$$

$$\varepsilon_{cMax} = \varepsilon_{co} \left(1 + k_2 \frac{f_l}{f_{co}} \right) \tag{2.47}$$

Burada; f_{cMax} kuşatılmış basınç dayanımı, f₁ yatay hidrostatik basınç altındaki gerilme ve ε_{cMax} ise yatay hidrostatik basınç altındaki gerilmeye karşı gelen birim kısalma, f_{co} kuşatılmamış beton gerilmesi, ε_{co} ise kuşatılmamış beton gerilmesi kaşılık gelen birim deformasyonudur. k₁ = 4.1 ve k₂ = 5k1 ise beton karışımına ve yanal basınca bağlı kat sayılarıdır.

Mander vd., tarafından önerilen gerilme-birim kısalma, kuşatılmış ve kuşatılmamış beton için eğrisi Şekil 11'de gösterilmektedir. Popovics (1973) tarafından önerilen bağıntısı aşağıda verilmektedir.

$$f_c = \frac{f_{cMax} x r}{r - 1 + x^r} \tag{2.48}$$

Burada; f_{cMax} kuşatılmış beton basınç dayanımı, f_c Beton eksenel basınç gerilmesi, x ise birim şekil değiştirme oranı olarak tanımlanır.

$$x = \frac{\varepsilon_c}{\varepsilon_{cMax}}$$
(2.49)

Şekil 11. Kuşatılmış ve kuşatılmamış beton için Mander beton modeli (Mander vd., 1988)

Burada; ε_c betondaki birim deformasyonu, ε_{cMax} ise Richart vd., (1928)'de tarafından önerildiği gibi kuşatılmamış beton dayanımı f_{co} ve buna karşılık gelen birim deformasyonu ε_c 'ne bağlı olarak (Mander vd., 1998) modelinde

$$\varepsilon_{cMax} = \varepsilon_{co} \left[1 + 5 \left(\frac{f_{cMax}}{f_{co}} - 1 \right) \right]$$
(2.50)

Denklem 2.50 ile yer vermektedir. Genellikle $\varepsilon_{co} = 0.002$ olarak kabul etmektedir.

$$r = \frac{E_c}{E_c - E_{sec}} \tag{2.51}$$

Denklem (2.50)'de

$$E_c = 5000\sqrt{f_{co}} \quad (MPa) \tag{2.52}$$

Burada çok kullanılan betonun elastisite modülü ve

$$E_{sec} = \frac{f_{cMax}}{\varepsilon_{cMax}} \tag{2.53}$$

Denklem 2.53'te ifade edilen E_{sec} sekant elastisite modülüdür. Denklem 2.53'te f_{cMax} ise kuşatılmış betonun basınç dayanımıdır. Bu modelde, kuşatılmış beton basınç dayanımı f_{cMax} belirlemek amacıyla çok eksenli basınç gerilmeleri için belirlenmiş bir nihai göçme yüzeyini içeren yapısal bir model kullanılır. Willim ve Warnke (1975) tarafından önerilen beş parametreli çok eksenli göçme yüzeyi, üç eksenli test verileriyle mükemmel bir uyum sağladı için benimsenmiştir (Mander vd., 1988).

Mander vd. (1988), beton kesit üzerindeki etkili yana çevresel basıncını belirlemek için Sheikh ve Üzümeri (1980) tarafından önerilen bağıntıya benzer bir yaklaşım ile benimsenmiştir. Çeliğin maksimum enine basıncı, beton çekirdeğin etkin olarak kuşatılırken, bu etkinlik enine donatı seviyelerinin ortasında, etkin olmayan şekilde kuşatılmış beton alanı en büyük olacak ve etkin olarak kuşatılmış beton çekirdek alanı en küçük olacaktır. Dikdörtgen ve dairesel enine donatı kullanıldığı durumlarda çekirdek betona uygulanan kuşatma etkisi düzgün olarak yayılmadığını, kabuk beton kırıldıktan sonra enine donatısının eğilme rijitliğinin az olması neden olduğu kesitin etkin taşıma alanı azalır (Mander vd. 1988).

$$f_l' = f_l k_e \tag{2.54}$$

Burada; f'_l etkili kuşatma basıncıdır.

$$k_e = \frac{A_{et}}{A_{ck}} \tag{2.55}$$

Dolaysıyla Denklem 2.55'te k_e ise kuşatma etkinlik katsayısı, A_{et} etkin kuşatılmış beton kesit alanı,

$$A_{cc} = b_c d_c (1 - \rho_{cc}) \tag{2.56}$$

Denklem 2.56'da A_{ck} ise olarak net çekirdek beton alanı ve ρ_{cc} boyuna donatı toplam alanının beton çekirdek alanına oranıdır (Mander vd., 1998).

Şekil 12. Fretli donatılı kesitlerde etkin olarak kuşatılmış beton alanı (Mander vd. 1988)

Mander modelinde, etkili kuşatma basıncı f'_1 'nin bulunması için Sheikh ve Üzümeri (1980) tarafından önerilen yaklaşım benimsenmiştir. Böylelikle öncelikle etriyeler tarafından beton çekirdek üzerinde oluşturulan kuşatma basıncının tahmin edilmesi gerekmektedir. Başlangıçta 45 derecelik eğimi ile ikinci dereceden bir parabol şeklinde meydana geldiğinde, iki kuşatma donatısının orta kısımlarına gidildikçe etriyelerin kuşatma kapasiteleri azalacak ve böylece orta bölgedeki etkin kuşatılmış beton alanı, A_e giderek küçülecektir ve etkin kuşatılmış beton alanların birleştirerek enine donatı ortasındaki etkili bir şekilde kuşatılmış beton alanı şu şekilde ifade edilir;

$$A_{ck} = b_{co}h_{co} \tag{2.57}$$

$$A_{et} = \lambda A_{co} \tag{2.58}$$

Şekil 13. Dikdörtgen enine donatı için etkin kuşatılmış çekirdek beton alanı

Şekil 13'te görüldüğü üzeri başlangıçta 45 derecelik eğimi ile ikinci dereceden bir parabol şeklinde meydana geldiğinde, kuşatma donatısının sargılama etkisi düşeyde yanal donatılar arasında ve yatayda da boyuna donatılar arasında etkisini göstermektedir. Yanal kuşatma donatı seviyesindeki etkin olarak kuşatılmış kesit alanı, ikinci derece parabollerin alanından çıkarılarak bulunabilir. Bu nedenle, n adet boyuna sayısına göre beton kesit aşağıdaki gibi bulunur.

$$A_i = \frac{\sum_{i=1}^{n} (w_i)^2}{6} \tag{2.59}$$

$$A_{et} = \left(b_c d_c - \sum_{i}^{n} \frac{(w_i)^2}{6}\right) \left(1 - \frac{s'}{2b_c}\right) \left(1 - \frac{s'}{2d_c}\right)$$
(2.60)

$$k_e = \frac{\left(1 - \sum_{l=1}^{n} \frac{w_l^2}{6b_{co}h_{co}}\right) (b_{co} - 0.5 s')(h_{co} - 0.5 s')}{(1 - \rho_{co})}$$
(2.61)

Burada; d_c ise donatı merkezleri arasındaki mesafedir (Mander vd., 1998).

Dikdörtgen betonarme kesitlerde her iki yönde (x ve y) farklı miktarda kuşatma donatısı olabilir. Bu durumda her iki yöndeki etkin kuşatma gerilmesini ifade etmek için

$$\rho_s = \rho_x \rho_y = \frac{A_{shx}}{sd_c} + \frac{A_{shy}}{sb_c}$$
(2.62)

Denklem 2.62'de x ve y yönlerindeki kuşatma donatı miktarları tanımlanarak bu yönlerdeki beton yüzeylerine etkiyecek kuşatma gerilmeleri sırasıyla x yönünde

$$\sigma_{3x} = \rho_x f_{ywk} \tag{2.63}$$

ve y yönünde

$$\sigma_{3y} = \rho_y f_{ywk} \tag{2.64}$$

bağıntıları ile bulunur ve her iki yöndeki etkin kuşatma gerilmeleri sırası ile

$$\sigma_{3x} = k_e \sigma_{3y}, \quad \sigma_{3y} = k_e \sigma_{3y}, \quad \sigma_{3} = \sigma_3 k_e \tag{2.65}$$

olarak elde dilmiş olur (Mander vd., 1988).

Eğilmeye çalışan betonarme bir elemanda meydana gelen plastik mafsalların nihai dönme kapasitelerini hesaplayabilmek için, betonun nihai birim deformasyon ε_{cu} değerini tahmin etmek gerekir (Mander vd., 1988). Betondaki nihai birim deformasyon değeri ε_{cu} enine donatıda oluşan ilk kopma anındaki değere karşılık gelir. Birçok araştırmacı tarafından betonarme elemandaki birim deformasyon ε_{cu} modeller önermişlerdir. Bunlardan bir Park ve Paulay (1975) tarafından önerilen ve Mander vd. (1988) tarafından yapılan deneysel verilerden okunan ε_{cMaxu} değerleri ile daha iyi sonuçları gösteren bir bağıntıdır (Mander vd., 1988).

$$\varepsilon_{cMaxu} = 0.004 + \frac{1.4 \,\rho_s \, f_{ywk} \,\varepsilon_{su}}{f_{cMax}} \tag{2.66}$$

Bağıntısı dikkate alınmıştır.

$$f_{cMax} = f_{co} \left(-1.254 + 2.254 \sqrt{\frac{1+7.94f_l'}{f_{co}}} - 2\frac{f_l'}{f_{co}} \right)$$
(2.67)

Denklem 2.67'de f_l' etkili kuşatma basıncı, f_{co} kuşatılmamış beton dayanımı tanımlanır.

Şekil 14. Kuşatılmış dikdörtgen kesitler için yanal kuşatma gerilmeleri ile kuşatılmış beton dayanım hesabı (Mander vd., 1988).

2.7. Koksal ve Erdoğan Beton Modeli

Bu modelde ise yanal kuşatma basıncının etkisinin çekirdek beton üzerinde azalarak tam merkezde bulunan belirli bir hacme ulaşarak kolon taşıma belirlediği ileri sürülmüştür. Burada kullanılan kuşatma basıncı değeri çekirdek üzerindeki değil iç bölgesinde oluşan ve belirli bir oranda azaltılan değerlerdir. Beton üç eksenli basınç kriteri olarak da Köksal (2006) yılında ileri sürülen ve bu çalışmada pratik bir bağıntıya dönüştürülen yeni bir ifade de kullanılmışlardır. Yanal bağları olan bir betonarme kolon, artan bir eksenel yükü maruz kaldığında gerilme-birim deformasyon davranışının tahmini, performansa dayalı olarak sismik tasarımın yer değiştirmeye dayalı yönteminde çok önemlidir. İlk adım da gerilmebirim deformasyon tepkisini ifade etmek için bir betonarme kolonunun maksimum dayanımı belirlenmesidir (Köksal ve Erdoğan, 2022).

$$f(\sigma_1, \sigma_2, \sigma_3) = 1.13\xi^{0.765} + \rho - \sqrt{2k}((\sigma_1, \sigma_2, \sigma_3)$$
(2.68)

Burada; $\sigma_1, \sigma_2, \sigma_3$ gerilmeler, ξ ise hidrostatik uzunluğu ve ρ ise deviatorik gerilmesidir.

$$\xi = \frac{\sigma_1 + \sigma_2 + \sigma_3}{\sqrt{3}} \tag{2.69}$$

$$\rho = \frac{\sqrt{(\sigma_1 - \sigma_2)^2 + (\sigma_1 - \sigma_3)^2 + (\sigma_2 - \sigma_3)^2}}{\sqrt{3}} \tag{2.70}$$

$$\sigma_1 \ge \sigma_2 \ge \sigma_3 \tag{2.71}$$

Burada; k azaltılmış kuşatma basınç,

$$k = \left(4.07 \frac{f_{ler}}{f_{co}} - 0.89 \left(\frac{f_{ler}}{f_{co}}\right)^2 + 0.807\right) f_{co}$$
(2.72)

Denklem 2.73'te f_{cMax} kuşatılmış beton için nihai dayanımı aşağıdaki bağıntı ile bulunabilir.

$$0.526(f_{cMax} + 2f_{ler})^{0.7645} + 0.5774\sqrt{[(f_{cMax} + 2f_{ler})^2 - 3(2f_{co}f_{ler} + f_{ler}^2]} - k = 0$$
(2.73)

Yanal donatı kuşatılmış betonarme kolonlarda yapılan deneysel çalışmalar aslında

 $0.60 \leq \xi/f_{co} \leq 1.00$ aralığındadır.

$$\frac{\rho}{f_{co}} = 0.98 \frac{\xi}{f_{co}} + 0.26 \tag{2.74}$$

Bu ilişki üzerinde gerekli sadeleştirmeler yapıldıktan sonra, yüksek dayanımlı kolonlarının nihai dayanımı için çok basit bir formül oluşturulabilir.

$$f_{cMax} = 7.8f_{ler} + f_{co} (2.75)$$

$$f_{co} = 0.85 f_c \ e \breve{g} er \ f_{co} > 60 MPa$$
 (2.76)

$$f_{co} = f_c \tag{2.77}$$

$$e \check{g} er 35 MPa \le f_{co} \le 60 MPa \tag{2.78}$$

$$ve f_{ywk} \le 1000 \, MPa \tag{2.79}$$

$$ve f_{co} = 0.85 f_c$$
 (2.80)

$$e \breve{g} er \ 35 \ MPa \le f_{co} \le 60 MPa \tag{2.81}$$

$$ve f_{vwk} > 1000 MPa \tag{2.82}$$

Burada; iyi bilinen Saenz ilişkisi kuşatılmış beton deneylerin gerilme-deformasyon davranışını yönlendirmek için kullanılmıştır.

$$\sigma_1 = \frac{\varepsilon_1 E_0}{1 + \left(\frac{E_0}{E_{sec}} - 2\right) \frac{\varepsilon_1}{\varepsilon_c Max} + \left(\frac{\varepsilon_1}{\varepsilon_c Max}\right)^2}$$
(2.83)

Burada; σ_1 ve ϵ_1 sırasıyla eksenel gerilme ve birim deformasyondur.

$$\varepsilon_{cMax} = 0.0033 \left(1 + k_2 \frac{f_{ler}}{f_c} \right) \tag{2.84}$$

Burada; f_{cMax} maksimum kuşatma basıncı ve bunu karşılık gelen ϵ_{cMax} birim kısalmadır

$$E_0 = 4750\sqrt{f_c} \quad ; \quad E_{sec} = \frac{f_{cMax}}{\varepsilon_{cMax}} \tag{2.85}$$

ÜÇÜNCÜ BÖLÜM MOMENT-EĞRİLİK İLİŞKİLERİ VE TEORİK HESAP GİRİŞ

Bir yapının deprem yükleri altındaki davranışının belirlenmesi için betonarme bir elemanın davranışının gerçekçi bir şekilde bilinmesi ve modellenmesi gereklidir. Herhangi bir betonarme elemanın gerilme-şekildeğiştirme davranışı öncelikle o elemanda kullanılan malzemelerin mekanik özelliklerine ve kesit geometrisine bağlıdır. Elemana etkiyen yüklemelerde davranışı belirleyen faktörlerdendir. Yüklemelerin kesitte oluşturacağı yatay ve yüzeye dik gerilmelerin genellikle birbirinden bağımsız olarak incelendikleri tasarım mühendisleri tarafından bilinen hususlardandır. Betonun kayma dayanımının çekme dayanımından büyük olması da ilk olarak yük artışı ile birlikte normal gerilme ve şekildeğiştirmelerin incelenmesi gerekliliğini getirir. Bu nedenle, normal kuvvet ve eğilme momentinin bileşik etkisi betonarme kolon ve kirişlerde kesit boyutlarının belirlenmesinde belirleyici olan etkilerdir. Eğilme etkisi altındaki betonarme kesitlerin davranışları ise genellikle moment-eğrilik ilişkileri üzerinden tanımlanmaktadır. Özellikle betonarme kirislerin moment-eğrilik iliskileri deneysel olarak kolaylıkla ölçülebilmektedir. Deprem yükleri altında betonarme elemanların şekildeğiştirme davranışlarının iyileştirilmesi, günümüzde depreme dayanıklı yapıların tasarımlarında önemli bir yer tutmaktadır. Taşınan yüklerde önemli bir azalma olmadan elemanların daha büyük şekildeğiştirmeler yapabilmesi için ilk tercih edilen önlem, yanal kuşatma mekanizmalarının kullanılmasıdır.

Yanal kuşatma mekanizmaları arasında ilk akla gelen etriyeler oluşturdukları kuşatma etkisiyle çekirdek betonun davranışını önemli oranda iyileştirebilirler. Bölüm 2'de beton için öne sürülen bünyesel modellerden bazıları açıklanmış ve bu modeller kapsamında kuşatma etkisinin eksenel yük kapasitesinde ve kısalma miktarlarında oluşan artışlar irdelenmiştir. Betonarme kolonlarda etriyelerin uyguladığı yanal kuşatma basıncı etkisiyle oluşan üç eksenli basınç durumunun oluşturacağı kolon dayanımında ve rijitliğindeki değişikliklerin belirlenmesi deprem altındaki bir yapının performansının belrilenmesi için şarttır. Bu yapılırken tercih edilen başlıca yöntem; betonarme elemanların moment-eğrilik ilişkilerini kullanmak ve artımsal yükler altında değişen eğilme rijitliğini yapısal çözümlemeye yansıtarak şekildeğiştirmeler için gerçekçi tahminlerde bulunmaktır. 2000'li yıllarla birlikte, yapıların sadece belirli yükleri güvenli bir şekilde temele ve zemine aktarmasına dayanan taşıma gücü yöntemine göre tasarımın yanında özellikle deprem etkisinde yapılarda oluşacak yanal ötelemelerin belirlenmesini ve sınırlandırılmasını hedefleyen tasarım esasları sıklıkla kullanılır hale gelmiştir. Şekildeğiştirme tabanlı analiz yöntemleri ile klasik dayanıma dayanan boyutlandırma ve tasarımdan daha gelişmiş hesaplamalar yapılabilmektedir. Bu hesaplamalarda Bölüm 2'de özetlenen malzeme modelleri tercih edilmektedir. TBDY 2018'de betonarme yapı tasarımında bu modeller arasında yer alan Mander modeli Bölüm 5'te kullanım amaçlı önerilmektedir. Bu modellerin oluşturulnası ve kullanılması sonrasında eğilme altındaki herhangi bir betonarme kesitin moment-eğrilik ilişkisi sayısal yöntemler ile belirlenebilmektedir.

Betonarme elemanlarda moment-eğrilik ilişkisi en sağlıklı biçimde deneysel çalışmalar ile elde edebilmektedir. Ancak bu durum eksenel yük etkisindeki büyük boyutlu kolonlar için pratik bir yöntem değildir. Bu nedenle gerçekçi bünyesel modellere ihtiyaç duyulmaktadır. Moment-eğrilik analizleri, doğrusal olmayan gerilme-birim şekildeğiştirme bağıntılarının kullanılması yoluyla betonarme bir kesitin yük-şekildeğiştirme davranışını belirlemekte kullanılan etkili bir yöntemdir. Bir elastik eğri üzerindeki iki komşu nokta arasındaki toplam açı değişiminin, bu iki nokta arasındaki mesafeye bölünmesi ile birim dönme açısı bulunmaktadır.

Eğrilik ise birim boya gelen dönme miktarını gösterien birim dönme açısı ile tanımlanmaktadır. Bu bölümde ilk olarak bir eğilme elemanına ait moment-eğrilik diyagramında yer alan karakteristik noktalar el ile yapılan hesapmalamalar ile bulunacaktır. Burada ilk nokta çatlmanın hemen öncesindeki kesitte oluşan moment ve eğirilişk değerleri olacaktır. Çatlamanın hemen sonrasındaki değerlerde belirlendikten sonra çekme donatısının aktığı andaki moment kapasitesi ve eğrilik değerleri hesaplanacaktır. Bu tez çalışması kapsamında betonarme kolonlarda moment-eğrilik ilişkilerini elde etmek için genel bir yazılım da geliştirilerek kullanılacaktır. Bu yazılımda kullanılan malzeme modeli TBDY 2018'de önerilen Mander modeli olarak seçilmiştir.

3.1. Kesit Eğriliği

Eğrilik κ, Şekil 15'te gösterildiği gibi, iki kesit arasındaki dönme açısı farkından veya doğrudan kesitteki birim deformasyondan yararlanarak hesaplanabilir:

$$\kappa = \frac{1}{\rho} = \frac{d_{\phi}}{d_x} = \frac{\varepsilon_{cm}}{c}$$
(3.1)

Bu bağıntıda d_{ϕ} , d_x boyundaki açısal değişimdir. ρ eğrilik yarıçapını, c tarafsız eksen derinliğini ve ε_{cm} en dıştaki beton lifinde oluşan en büyük birim kısalma değerini göstermektedir.

Şekil 15. (a) Normal kuvvet ve eğilmeye etkisindeki bir betonarme kolonda (b) çift sıra donatı için (c) birim şekildeğiştirmeler ve (d) gerilme dağılışı

Şekil 15'teki eğrilik yarıçapı ρ , eleman tarafsız ekseni ile şekildeğiştirmiş eğrinin merkezinden olan uzaklık olarak tanımlamaktadır. Eğrideki şekildeğişimler için aşağdaki bağıntılar da yazılabilir:

$$\kappa = \frac{\varepsilon_{cm}}{c} = \frac{\varepsilon_s}{d-c} = \frac{\varepsilon_{cm} + \varepsilon_s}{d}$$
(3.2)

Bu bağıntıdaki ε_s değeri çekme donatısındaki birim şekildeğiştirmeyi göstermektedir. Eğilme momenti M ile κ eğriliği arasındaki ilişki aşağıdak, bağıntıda verilmektedir:

$$M = EI\kappa \tag{3.3}$$

Burada EI kesitin eğilme rijitliğidir.

Şekil 16'da görüleceği üzere betonarme bir kirişte herhangi bir normal kuvvet bulunmadığından daha sünek bir davranış gelişecektir. Kolonlarda ise normal kuvvet moment kapasitesini bir miktar artırsa da sonrasında hem süneklik hem kapasite düşecektir. Buradaki artış ise etriyelerin kuşatma basıncına bağlıdır. Etriyeler sünekliği artıran ve aşırı gevrek kırılmayı önleyen mekanizmalardır. Depreme dayanıklı yapı tasarımda kullanılan kolonların kirişlerden daha güçlü olması şartı da bir bakıma bu şekilde gerçekleştirilmektedir. Kolon kesitlerinin boyutlarındaki artış normal gerilme değerlerini azaltacaktır. Kirişlerde ise çatlama yükü aşıldıktan sonra ve çekme donatısının akması ile birlikte büyük dönmeler oluşacaktır. Kolonların tasarım esasları gereği bu oranda dönme miktarına ulaşması mümkün olmayacaktır.

Bir betonarme elemanın moment-eğrilik ilişkisini belirlemek bazı karmaşık ve iteratif hesaplamaları gerektirmektedir. Genel olarak bir betonarme eleman mekanik özellikleri farklı iki ayrı malzemeden oluştuğundan homojen bir malzeme olarak modellenemez. Bu bağlamda, donatı çeliğinin çekme ve basınç altında aynı elasto-plastik davranışı gösterdiği yaklaşık olarak kabul edilmektedir. Ayrıca beton basınç altındaki davranışı doğrusal olmayan elasto-plastik bir bünyesel model ile dikkate alınmak zorundadır.

Şekil 17. Beton bir kirişte moment-eğrilik diyagramlarındaki karakteristik noktalar

Şekil 17'de gösterilen betonarme bir kirişe ait moment eğrilik diyagramının oluşturulma sürecinde özellikle dört karakteristik nokta söz konusudur. Bunlardan ilki, beton kesitin çatlamasından hemen önce doğrusal davranışın geçerli olduğu düşük yük seviyesindeki noktadır. Bu noktadan hemen sonra betonun taşıdığı yük doğrudan donatıya aktarılır. Kesitin rijitliğinde de bir düşüş meydana gelir. Çatlamadan sonra kesitin davranışı esas olarak çelik miktarına bağlıdır. Az donatılı kirişlerde çekme donatısı akma gerilmesine ulaşana kadar doğrusala çok yakın bir moment-eğrilik eğrisi gözlenir. Çekme donatısı akma

gerilmesine ulaştığında ise donatı rijitliğindeki ani değişim doğrudan moment-eğrilik ilişkisine yansımaktadır. Çekme donatısının akmasından sonra kullanılan malzeme modeline göre farklı pekleşme oranları gözlenebilir. Ancak tamamen elasto-plastik davranış varsayımı kullanılır ise moment-eğrilik eğrisi de yataya çok yakın bir şekilde donatının kopma birim uzamasına ulaşmasına kadar devam edecektir. Eksenel kuvvet etkisinde betonarme kolonlar için bu davranış farklılaşacaktır. Özellikle betonun çekirdek kısmını sargılayan yanal donatılarının mekanik özellikleri ve aralıkları kolon davranışını belirleyen özelliklerdir. Eğer etriyeler yeterli aralıklarda ise doğrusal davranıştan kademli bir şekilde sapan bir momenteğrilik ilişkileri gözlenecektir. Bu eğrinin şekli ise uygulanan eksenel yükün büyüklüğü ile doğrudan ilişkilidir. Belirli yük seviyesinde sonra eksenel yükteki artış eğrinin şeklinde değişikliklere neden olacaktır ve bu şekilde kolon davranışı daha gevrek bir hal alır.

3.2. Moment-Eğrilik İlişkisinin Teorik Yöntemlerle Hesaplanması

Betonarme kesitlerin eğilme ve eksenel kuvvet altındaki moment-eğrilik ilişkileri, betona ait gerilme-birim kısalma ilişkilerinin bilindiği kabullerine dayanılarak, eğilme dayanımının belirlenmesi için kullanılan benzer varsayımlar temel alınarak elde edilebilir. Kesitin eğilmeden önce düzlem, eğilmeden sonra da düzlem kaldığı, beton ve çeliğin gerilme-birim kısalma eğrilerinin bilindiği varsayılmaktadır. Bir dizi eğilme momenti ve eksenel yük ile ilişkili eğrilikler, moment-eğrilik ilişkileri belirlenmesinde, gerilme-birim kısalma, denge denklemlerinin ve uygunluk denklemlerinin oluşturulmasıyla hesaplanır. Geometrik özellikleri bilinen bir kesitin belirli bir eksenel kuvvet altındaki moment-eğrilik ilişkilerinin hesaplanabilmesi için aşağıdaki varsayımlardan yararlanılır:

- 1. Şekil değiştirmeden önce düzlem olan kesitler, şekil değiştirdikten sonra da düzlem olarak kalır.
- Beton ve donatı arasında tam aderans vardır. Başka bir deyişle donatı çubuğundaki birim boy değişimi, komşu beton liflerdeki birim boy değişimi ile aynı değerdedir.
- Kuşatılmış ve kuşatılmamış betonun basınç altındaki davranışı, betonun çekme altındaki davranışı, donatı çeliğinin basınç ve çekme altındaki davranışları gerçekçi malzeme modelleri ile tanımlanır. Bu modellerden bazıları Bölüm 2'de açıklanmıştır.

Şekil 18. Moment-eğrilik ilişkisinin teorik olarak hesaplanması

Betonarme bir kolon kesiti için çelik ve beton için varsayılan gerilme-birim kısalma eğrileri ile kesit özellikleri Şekil 18'de gösterilmiştir. Burada; σ_y boyuna donatı akma dayanımı, σ'_c ise beton dayanımıdır. Basınç altında kalan bölge, en dış beton lifindeki birim kısalma ε_{cm} ve seçilen bir c tarafsız eksen derinliği için her donatı sırasına karşılık gelen birim şekildeğiştirmeler ε_{s1} , ε_{s2} , ε_{s3} , ε_{s4} , ε_{s5} ..., ε_{si} benzer üçgenler yardımıyla i donatı sırasının d_i derinliğine bağlı olarak hesaplanır. Bu bağlamda donatı çeliğinin ε_{s1} , ε_{s2} , ε_{s3} , ε_{s4} , ε_{s5} ..., ε_{si} birim şekildeğiştirmelerine karşılık gelen σ_{s1} , σ_{s2} , σ_{s3} , σ_{s4} , σ_{s5} ..., σ_{si} gerilmeleri çelik için seçilen gerilme-birim şekildeğiştirme bağıntıları kullanılarak bulunabilir. Bundan sonra donatılarda meydana gelen (F_{s1} , F_{s2} , F_{s3} , F_{s4} , F_{s5} ..., F_{si}) kuvvetleri her bir donatı sırası, toplam donatı alanı A_{si}'ye bağlı olarak hesaplanabilir.

3.2.1. Bir Betonarme Kiriş Kesit Grafik Üzerinde İncelenmesi

Şekil 19'da gösterilen tipik bir moment-eğrilik diyagramı üç kısımdan oluşturmaktadır. Birinci bölge olarak tanımlanan kısım, betonun çatlama dayanımına ulaşmadan önce gerçekleşir ve tamamen doğrusal elastik bir davranış gözlemlenir. El ile yapılacak diğer bölgelere göre çok daha basit olan hesaplamalar ile moment ve eğrilik sınır değerleri eğrinin bu kısmı için bulunabilir. Beton çatladıktan sonraki kesitte de çelik ve beton elastik davranmaya devam ederler. Bu bölgedeki hesaplamalarda çatlamış kesit atalet momentinin kullanılması yeterli olacaktır. Donatı çeliğinin akma dayanımına ve birim şekildeğiştirmesine ulaşmasıyla beraber kesit ve elemanda kalıcı şekildeğiştirmeler oluşmaya başlar. Kesit rijitliğinde önemli azalmalar görülür ve moment-eğrilik diyagramının eğimini yataya çok yaklaşır. Üçüncü bölgedeki hesaplamalar tez çalışmasının ikinci bölümünde açıklanan bünyesel modeller kullanılarak ve bilgisayar yardımıyla gerçekleştirilebilir.

Şekil 19. Betonarme kirişte moment-eğrilik ilişkisi

Çatlamadan hemen hemen önceki moment ve eğrilik değerlerini eğri üzerindeki karakteristik noktalardan biridir. Bu nedenle ilk belirlenmesi gereken ve doğrusal elastik davranışın ve kesit sürekliliğinin sınırı olan bu nokta için yapılacak hesaplamalarda beton elastisite modülü doğrudan kullanılacaktır:

$$E_c = 4500\sqrt{\sigma_c'} \tag{3.4}$$

Denklem 3.5'te E_c beton elastisite modülü ve σ'_c beton basınç dayanımıdır.

$$\varepsilon_o = \frac{2\sigma_C'}{E_C} \tag{3.5}$$

Denklem 3.5'te ε_0 betonun eksenel basınç dayanımına ulaştığı andaki birim kısalma değeridir. Hesaplamalarda Şekil 20'de gösterilen ve iki farklı malzemeden oluşan kesitte çelik malzemenin betona dönüştürülmesi gereklidir. Bu nedenle n modüler oranı çelik ve beton elastisite modüllerinin oranı olarak tanımlanmaktadır:

$$n = \frac{E_s}{E_C} \tag{3.6}$$

Denklem 3.5'teki beton elastisite modülü ve çelik için 200 GPa'lık değerler kullanılarak hesaplanabilir. Dairesel kesitli donatı çubuk alanları ise ϕ donatı çapı ve n_s donatı sayısı olmak üzere kesitteki toplam donatı alanı A_s

$$A_s = n_s \frac{\pi \phi^2}{4} \tag{3.7}$$

bağıntısıyla hesaplanabilirler.

Şekil 20. Betonarme kiriş için kesit çatlamadan önceki dönüştürülmüş kesit

$$\bar{y} = \frac{\sum A_i y_i}{\sum A_i} = \frac{(bh)^{\frac{h}{2} + (n-1)As(d')}}{(bh) + (n-1)As}$$
(3.8)

Denklem 3.8'de kesit ağırlık merkezi ordinatı olan \overline{y} değeri b ve h ise kiriş kesit boyutları olarak tanımlanmıştır. Çatlama öncesi tüm kesite ait atalet momenti değeri aşağıdaki bağıntı ile bulunabilir:

$$I_{\rm co} = \frac{bh^3}{12} + bh\left(c - \frac{h}{2}\right)^2 + (n-1)As(d-c)^2$$
(3.9)

Denklem 3.9'da I_{çö} tüm kesit atalet momenti, beton basınç \bar{y} ağrılık merkezi ve d ise en dış beton basınç lifinden çekme donatısı sırasının ağırlık merkezine olan uzaklığıdır. TS 500/2000'de beton için karakteristik eksenel çekme kuvvetti basınç dayanımına bağlı olarak aşağıdaki bağıntı ile tanımlanmaktadır:

$$f_t = 0.35\sqrt{\sigma_c'} \tag{3.10}$$

Beton için çatlama birim uzaması değeri ε_{co} aşağıdaki bağıntı ile bulunabilir:

$$\varepsilon_{\rm co} = \frac{f_t}{E_c} \tag{3.11}$$

Bağıntı 3.8, 3.9 ve 3.10'da verilen tüm değerler kullanılarak aşağıda verilen bağıntılar yardımıyla çatlama öncesi kesit moment değeri M_{co} ve kesit eğriliği κ_{co} hesaplanabilirler:

$$M_{\rm co} = (2.5)(f_t) \left(\frac{I_{\rm co}}{\bar{y}}\right) \tag{3.12}$$

$$\kappa_{\rm co} = \frac{\frac{f_t}{E_c}}{\bar{y}} \tag{3.13}$$

Moment-eğrilik diyagramı üzerindeki ikinci karakteristik nokta olan ve Şekil 21'de kiriş kesiti çatladıktan sonraki durumu gösteren noktaya ait aşağıdaki bağıntıları kullanılarak moment-eğrilik değerleri bulunabilir.

Şekil 21. Betonarme kiriş kesit çatladıktan sonraki durumu

Bu bağıntılarda c tarafsız eksen derinliğini göstermektedir ve alan birinci momentlerinin eşitliğinden yararlanılarak bulunabilir:

$$\sum_{Basing} A_i d_i = \sum_{\zeta ekme} A_i d_i \tag{3.14}$$

$$(b)(c)\left(\frac{c}{2}\right) = (n)(A_s)(d-c)$$
(3.15)

Tarafsız eksen derinliği değeri belirlendikten sonra ise I_{çs} kiriş kesitinin çatladıktan sonraki atalet momenti aşağıdaki bağıntı yardımıyla hesaplanabilir:

$$I_{\varsigma s} = \frac{bc^3}{12} + (b)(c)(c/2)^2 + (n)(A_s)(d-c)^2$$
(3.16)

Bağıntı 3.12 kullanılarak kesite ait moment değeri bulunur ve son olarak ise 17'de κ_{cs} kiriş kesit çatladıktan sonra ulaşılan eğrilik değeri de hesaplanabilir:

$$\kappa_{\varsigma s} = \frac{M_{\varsigma s}}{E_c I_{\varsigma s}} \tag{3.17}$$

Üçüncü karakteristik nokta ise çekme donatısı aktığı andaki durumdur. Bu kısımda da ilk olarak Şekil 22'de tarafsız eksen derinliğinin hesaplanması ya da tahmin edilmesi gerekmektedir. Aşağıda verilen yöntemlerle c tarafsız eksen derinliği değerinin bulanabilmesinde tercih edilen yol integral alınması şeklindedir.

Şekil 22. Betonarme kiriş kesitin çelik aktığı andaki durumu

Bu aşamadaki hesap basamakları Tablo 1'de verilmiştir.

Tablo 1		
Tarafsız eksen	derinliği c hesa	planması

$$A_{s}\sigma_{y} = b \int_{0}^{c} \sigma_{c}'(\varepsilon_{c}) dy$$

$$\varepsilon_{ct} = \frac{\varepsilon}{c} y$$

$$A_{s}\sigma_{y} = b \int_{0}^{c} \sigma_{c}' \left[\frac{2\varepsilon_{ct}}{\varepsilon_{0}} - \left(\frac{\varepsilon_{ct}}{\varepsilon_{0}} \right)^{2} \right] dy$$

$$A_{s}\sigma_{y} = b \int_{0}^{c} \sigma_{c}' \left[\left(\frac{\varepsilon_{ct}}{\varepsilon_{0}} \right) \left(\frac{y}{c} \right) - \left[\left(\frac{\varepsilon_{ct}}{\varepsilon_{0}} \right) \left(\frac{y}{c} \right) \right]^{2} \right] dy$$

$$A_{s}\sigma_{y} = b \sigma_{c}' \left[2 \left(\frac{y^{2}}{c} \right) \left(\frac{\varepsilon_{ct}}{2\varepsilon_{0}} \right) - \frac{y^{3}}{3c^{2}} \left(\frac{\varepsilon_{ct}}{\varepsilon_{0}} \right)^{2} \right]_{0}^{c}$$

$$A_{s}\sigma_{y} = b \sigma_{c}' c \left[\left(\frac{\varepsilon_{ct}}{\varepsilon_{0}} \right) - \frac{1}{3} \left(\frac{\varepsilon_{ct}}{\varepsilon_{0}} \right)^{2} - \frac{1}{3} \left(\frac{\varepsilon_{y}}{\varepsilon_{0}} \right)^{2} \frac{c^{3}}{(d-c)^{2}} \right]$$

Tablo 1'de verilen hesap basamaklarından sonra c tarafsız eksen derinliği, Denklem 3.18 integral sadeleşerek hesaplanabilir.

$$\varepsilon_{ct} = \varepsilon_y \frac{c}{(d-c)} \tag{3.18}$$

Denklem 3.18'de ε_{ct} çeliğin aktığı anda betonda oluşan birim kısalmadır. Çelik aktığı andaki eğrilik değeri κ_y ise

$$\kappa_y = \frac{\varepsilon_{ct}}{c} \tag{3.19}$$

Olarak hesaplanabilir.

Bu kısımda ise, Şekil 23'te gösterilen beton basınç bloğunun ağrılık merkezinin yeri integral alınarak aşağıdaki gibi bulunur.

Şekil 23. Betonarme kiriş kesitinde çelik aktığı andaki ağrılık merkezi bulunması

$$\bar{y} = \frac{\int_0^c y f_c dy}{\int_0^c f_c dy}$$
(3.20)

$$\bar{y} = \frac{\int_0^c y \left[2\left(\frac{\varepsilon_{ct}}{\varepsilon_0}\right) \left(\frac{y}{c}\right) - \left[\left(\frac{\varepsilon_{ct}}{\varepsilon_0}\right) \left(\frac{y}{c}\right)\right]^2 \right] dy}{\int_0^c \left[2\left(\frac{\varepsilon_{ct}}{\varepsilon_0}\right) \left(\frac{y}{c}\right) - \left[\left(\frac{\varepsilon_{ct}}{\varepsilon_0}\right) \left(\frac{y}{c}\right)\right]^2 \right] dy}$$
(3.21)

$$\bar{y} = \frac{\left[\frac{2}{3}\left(\frac{\varepsilon_{ct}}{\varepsilon_{0}}\right)(c)^{2} - \frac{1}{4}\left(\frac{\varepsilon_{ct}}{\varepsilon_{0}}\right)^{2}(c)\right]}{\left[\left(\frac{\varepsilon_{ct}}{\varepsilon_{0}}\right)(c) - \frac{1}{3}\left(\frac{\varepsilon_{ct}}{\varepsilon_{0}}\right)(c)\right]}$$
(3.22)

Denklem 3.20, 3.21 ve 3.22'de \bar{y} ağrılık merkezi, Tablo 1'deki integral sadeleşerek bulunabilir.

$$M_y = A_s f_y (d - c + \bar{y}) \tag{3.23}$$

Denklem 3.23'te M_v çelik aktığı andaki durumu için moment hesaplanabilir.

3.2.2. Moment-Eğrilik İlişkisinin Sayısal Olarak Hesaplanması

Tez çalışmasının ilk aşamasında Şekil 24'te gösterilen örnek bir betonarme kiriş kesittinin çatlama öncesi ve hemen sonrası moment-eğrilik değerleri ile donatı çeliğinin aktığı andaki değerleri sayısal olarak elde edilmiştir.

Şekil 24. Betonarme kiriş kesit

(a) (b) Şekil 25. Betonarme кırış kesit için moment-eğrilik ve betonun basınç altındaki gerilmebirim kısalma ilişkileri

Tablo 2

Kiriş kesit özellikleri

Kiriş Yüksekliği (h)	Kiriş Genişliği (b)	Paspayı (d')
500 mm	300 mm	50 mm

Tablo 3

Kiriş kesit malzeme özellikleri

Kesit	Beton	Donatı	Beton Basınç	Çelik Elastisite	Çelik Çekme
No	Sınıfı	Sınıfı	Dayanımı	Modülü	Dayanımı
H1 Kiriş	C25	S420	25 MPa	200000 MPa	420 MPa

Betonarme kirişin davranışı belirlenirken el hesaplamalarında pratik olması nedeniyle beton için önerilen ilk modellerden olan ve günümüzde de kullanılan Honestad (1951) beton modeli kullanılmıştır.

I. Betonarme kiriş kesitinin çatlamasından hemen önce:

Betonarme kiriş kesitinde çatlama oluşmadan hemen önceki, dönüştürülmüş kesit özelliklerini kullanılarak moment-eğrilik değerleri hesaplanmıştır.

Beton elastisite modülü Denklem 3.4 kullanılarak aşağıdaki gibi hesaplanmıştır.

 $E_c = 4500\sqrt{25} = 22.5 \times 10^3 \text{ MPa}$

Betonun basınç dayanımına ulaştığı andaki birim kısalma değeri ε_0 Bağıntı 3.5 kullanılarak aşağıdaki gibi hesaplanabilir.

$$\varepsilon_o = \frac{2(25)}{22500} = 0.0022$$

Bu bağlamda n modüller oranı çelik ile beton elastisite modüllerinin oranı olarak Denklem 3.6 kullanılarak belirlenir:

$$n = \frac{200000}{22500} = 8.89$$

Kiriş kesitindeki toplam donatı alanı ise aşağıdaki şekilde hesaplanabilir.

$$A_s = \frac{\pi(25)^2}{4}(3) = 1471 \, mm^2$$

Kiriş kesitin ağrılık merkezi Denklem 3.8 kullanılarak elde edilebilir:

$$\bar{y} = \frac{\sum A_i y_i}{\sum A_i} = \frac{(300)(500)\frac{500}{2} + (8.89 - 1)(1471)(50)}{(300)(500) + (8.89 - 1)(1471)} = 235.65 \text{ mm}$$

Çatlamadan hemen önceki tüm kesit atalet momenti Denklem 3.9 kullanılarak aşağıdaki gibi hesaplanabilir.

$$I_{\varsigma \ddot{o}} = \frac{(300)(500)^3}{12} + (300)(500)(214.35 - 250)^2 + (8.89 - 1)(1471)(450 - 214.35)^2 = 3.96 \times 10^9 \ mm^4$$

TS 500'de önerilen beton tasarım eksenel çekme dayanımı Denklem 3.10 kullanılarak aşağıdaki gibi belirlenir.

$$f_t = 0.35\sqrt{25} = 1.75 MPa$$

Çatlama önceki durumu için birim kısalma Denklem 3.11 kullanılarak elde edilir:

$$\varepsilon_{c\bar{c}} = \frac{1.75}{22.5 \times 10^3} = 7.71 \times 10^{-5}$$

Çatlama önceki durum için eğilme momenti Denklem 3.12 kullanılarak aşağıdaki gibi bulunmaktadır.

$$M_{\text{co}} = (2.5)(1.75) \left(\frac{3.96 \times 10^9}{235.65}\right) = 73.52 \times 10^6 \text{ N-mm}$$

Çatlama önceki durum için eğrilik değeri ise Denklem 3.13 kullanılarak aşağıdaki gibi bulunabilir.

$$\kappa_{\rm c\bar{o}} = \frac{\frac{1.75}{22.5 \times 10^3}}{235.65} = 3.29 \times 10^{-7} \ 1/\rm{mm}$$

II. Betonarme kiriş kesit çatladıktan sonra durumu için

Betonarme kiriş kesitinde çatlama meydana geldikten sonra, dönüştürülmüş kesit özelliklerini temel alınarak moment-eğrilik değerleri hesaplanmıştır.

Çatlamadan hemen sonra kiriş kesitinde tarafsız eksen derinliği değeri Denklem 3.7 ve 3.15 kullanılarak aşağıdaki gibi hesaplanır.

$$(300)(c)\left(\frac{c}{2}\right) = (8.89)(1471)(450 - c)$$

c= 159 mm

Çatlamış kesit atalet momenti ise Denklem 3.15 ve 3.16 kullanılarak aşağıdaki gibi elde edilebilir.

$$I_{\varsigma s} = \frac{(300)(159)^3}{12} + (300)(159)(159/2)^2 + (8.89)(1471)(450 - 159)^2$$
$$I_{\varsigma s} = 1.5 \times 10^9 \ mm^4$$

Dolaysıyla kiriş kesittin çatlamadan hemen sonraki durumu için eğrilik Denklem 3.4, 3.12 ve 3.16 kullanılarak belirlenebilir:

$$\kappa_{\rm cs} = \frac{73.52 \times 10^6}{(22.5 \times 10^3)(1.5 \times 10^9)} = 2.1 \times 10^{-6} \, 1/\rm{mm}$$

Çatlamadan hemen sonraki durumu için son aşama eğilme momentinin Denklem 3.12 kullanılarak bulunmasıdır:

$$M_{\varsigma s} = (2.5)(1.75) \left(\frac{3.96 \times 10^9}{235.65}\right) = 73.52 \times 10^6 \text{ N-mm}$$

III. Betonarme kiriş kesit çelik donatı aktığı andaki durumu için

Betonarme kiriş kesitinde donatı aktığı andaki moment eğrilik değerleri beton için verilen bünyesel davranış modeli kullanılarak bulunmuştur.

Çelik aktığı andaki, ilk aşma tarafsız eksen derinliğinin hesaplanmasıdır. Bu bağlamda Tablo 1'deki elde edilen sonuçları kullanılarak aşağıdaki gibi bulunabilir.

$$(1471)(420) = (300)(25) \left[\left(\frac{0.0021}{0.0022} \right) \left(\frac{c^2}{450 - c} \right) - \frac{1}{3} \left(\frac{0.0021}{0.0022} \right)^2 \left(\frac{c^3}{(450 - c)^2} \right) \right]$$

c= 230.3 mm

Dolaysıyla çelik aktığı andaki durumu için betondaki birim kısalma Denklem 3.18 kullanılarak aşağıdaki gibi belirlenir.

$$\varepsilon_{ct} = (0.0021) \frac{230.3}{(450-230.3)} = 2.2 \times 10^{-3}$$

Çelik aktığı andaki durumu eğrilik için Denklem 3.19 kullanılır:

$$\kappa_y = \frac{2.2 \times 10^{-3}}{230.3} = 9.6 \times 10^{-6} \text{ 1/mm}$$

Bu bağlamda ağrılık merkezi Denklem 3.20, 3.21 ve 3.22 kullanılarak aşağıdaki gibi bulunabilir.

$$\bar{y} = \frac{\left[\frac{2}{3}\left(\frac{2.2 \times 10^{-3}}{0.0022}\right)(230.3)^2 - \frac{1}{4}\left(\frac{2.2 \times 10^{-3}}{0.0022}\right)^2(230.3)\right]}{\left[\left(\frac{2.2 \times 10^{-3}}{0.0022}\right)(230.3) - \frac{1}{3}\left(\frac{2.2 \times 10^{-3}}{0.0022}\right)^2(230.3)\right]} = 229.9 \text{ mm}$$

Son aşama olarak eğilme momenti Denklem 3.23 kullanılarak aşağıdaki gibi hesaplanır.

$$M_{\nu} = (1471)(420)(450 - 230.3 + 229.9) = 2.77 \times 10^8$$
 N-mm

Tablo 4

Sayısal örnekten elde edilen moment-eğrilik değerleri					
Çatlamadan Önce DurumuÇatladıktan Sonra Durumu		Çelik Donatı Aktığı Anda			
M _{çö}	73.52 kN-m	M _{çs}	73.52 kN-m	My	277.77 kN-m
κ _{çö}	3.29 × 10 ⁻⁴ 1/m	к _{çs}	$2.1 \times 10^{-3} \text{ l/m}$	$\kappa_{\rm y}$	9.6 × 10 ⁻³ 1/m

Şekil 26. Sayısal örnekten elde edilen moment-eğrilik ilişkileri

3.3. Malzeme modelleri

Betonarme kesitlerin moment-eğrilik ilişkisi büyük oranda seçilen malzeme modellerinden etkilenmektedir. TBDY 2018'de Mander modelinin kuşatılmış betonarme kesitlerde kullanımı önerilmekteyken kuşatılmış kesitlerde Hognestad benzeri bir model tanımlanmaktadır. Bu tez çalışmasında ikinci bölümde incelenen Mander, Saatçioğlu-Razvi ve Köksal-Atacan modelleri karşılaştırmalı kullanılmıştır.

3.3.1. Donatı Çeliği İçin Önerilen Model

Şekil 27'de görüldüğü üzere seçilen donatı çeliği modeli, doğal sertlikte işlem görmüş bir çeliğin gerilme-birim kısalma davranışı olarak gösterilmektedir. Şekil 27'de gösterilen eğri üç kısımdan oluşturmaktadır. Akma dayanımına ulaşılana kadar olan kısımda, elastik davranış sergileyen malzemeler eğrinin ikinci kısmında akmanın başlamasıyla beraber elasto-plastik davranış ve kalıcı şekildeğiştirmeler göstermektedirler. En son bölgede ise çelik pekleşmiş ve beton basınç bölgesindeki malzeme davranışı ise en üst kapasitesine ulaşmaya başlamıştır. Eğri yataya çok yakın bir hale gelerek çeliğin kopma birim uzamasına ulaşmasıyla sonlanır.

Şekil 27. Doğal sertlikteki bir çelik için gerilme-birim şekildeğiştirme ilişkisi (Ersoy ve Özcebe,1988)
3.4. Analiz Aşamaları

Herhangi bir betonarme kesitin moment-eğrilik ilişkisinin belirlenmesi için geliştirilen METP program, kolon kesitini kullanıcı tarafından istenilen boyutta tanımlanabilecek dilimlere ayırarak analiz etmektedir. Şekil 28'de gösterilen bir kare betonarme kolon kesiti dilimlere ayrılarak seçilen tarafsız eksen derinliğinin üstünde kalan beton basınç kısmı için tüm bu dilimlerde oluşan toplam bileşke basınç kuvveti hesaplanabilmektedir. Bu hesaplamada kuşatılmış beton modelinden elde edilen gerilmebirim kısalma diyagramı kullanılmaktadır. Programda, beton basınç bileşkesi donatılarda oluşan normal kuvvet değerleri ile toplandığında kesite etkiyen eksenel kuvvet değeri bulunmaktadır. İstenilen hesap basınç değerine ulaşılıncaya kadar sürdürülen ardışık işlemlerden oluşan bir analiz yöntemi bu noktada kullanılmaktadır. İki değer arasında programda önceden tanımlanabilen yeterli bir yakınlığa ulaşıldığında bu değere ait tarafsız eksen derinliği ve bileşke kuvvetin yeri kullanılarak bulunan moment ve eğrilik değerleri grafiğe işlenmektedir. Bu yöntem sonucunda farklı tarafsız eksen derinlikleri ve tanımlanan eksenel yük değeri için hesaplanan tüm değerler moment-eğrilik grafiğinin oluşturulmasında kullanılmaktadır.

Şekil 28. Teorik moment-eğrilik ilişkisinin tayini için katmanlı modelleme tekniği

Şekil 29'da görüldüğü gibi kesitteki doğrusal olarak değiştiği kabul edilen birim kısalma dağılımının belirlenmesi amacıyla, önce çekirdek betonun en dış lifindeki birim kısalma için bir değer seçilir ve tarafsız eksenin yeri c için bir ön değer kabul edilir. Böylelikle kesit boyunca birim kısalma dağılımı belirlenmiş olur. Her bir dilime karşılık gelen birim kısalma bulunur ve kuşatılmış betonun gerilme-birim kısalma bağıntılarından, her dilim için o birim kısalmalara karşılık gelen gerilmeler hesaplanır. Örnek olarak çekirdek betonu basınç bölgesi için (i) adet şeride bölünsün ve bu şeridin alanları (A_{c1} , A_{c2} , A_{c3} ,..., A_{ci}) olsun. Basınç bölgesi betonu için, her bir şeridin ortasına denk gelen birim kısalmalar (ε_{c1} , ε_{c2} , ε_{c3} ,..., ε_{ci}) olarak tespit edilir. Her şeride etkiyen gerilme, o şeridin birim kısalma değerine karşılık gelen değer okunarak belirlenir. Örnek olarak basınç bölgesindeki 6 numaralı şeridin alanı A_{c6} ve karşılık gelen birim kısalma ε_{c6} ise şeridin gerilme değeri çekirdek betonu için gerilme-birim kısalma dağılımından 6 no.lu katman için σ_{c6} olarak bulunur. Şekil 28'de görüldüğü üzeri bu şeridi etkiyen basınç kuvvet ise $F_{c6} = (\sigma_{c6})(A_{c6})$ ' dır.

Şekil 29. Çekirdek beton ve donatı çeliği katmanlarındaki kuvvetlerin bulunuşu

3.5. METP Programı Kullanılarak Üç Farklı Beton modellerin, Moment-Eğrilik İlişkilerinin Karşılaştırılması

Bu çalışmada kapsamında, kare kesitli 7 adet betonarme kolonun sabit eksenel yük seviyesinde moment-eğrilik ilişkileri elde edilmiştir. Seçilen betonarme kolon kesitlerinin, farklı etriye aralığı değerleri için Saatçioğlu ve Razvi, Mander vd., ve Köksal ve Erdoğan modelleri ile yanal kuşatma basıncı etkileri göz önüne alınarak moment-eğrilik grafikleri elde edilmiştir. Birinci adımda sıfır eksenel kuvvet altında analiz edilerek daha sonra sabit eksenel kuvvet altında moment-eğrilik ilişkileri incelenmiştir. Bu bağlamda elde edilen sonuçları garafikler üzerinde karşılaştırılmıştır. Moment-eğrilik ilişkileri hesaplamasında kullanılan yöntem aşamaları aşağda Şekil 30'da gösterilmiştir.

Şekil 30. Moment-eğrilik akış şeması

Malzeme Sınıfı	Malzeme Karakteristik Özellikleri	Değerler
	Kuşatılmamış beton birim deformasyon (ε_{co})	0.002
Beton: C30	Betondaki en büyük birim deformasyon (ε_{cu})	0.0035
	Beton kapasite dayanımı (f_{su})	30 MPa
	Çeliğin akma birim deformasyon (ε_{sy})	0.0021
Donatı: 420	Donatı kopma gerilmesine karşılık gelen birim deformasyon (ε_{sp})	0.008
	Donatı çeliğinde kopma birim deformasyon (ε_{su})	0.08
	Karakteristik çelik akma dayanımı ($f_{\rm vk}$)	420 MPa

Tablo 5 Betonarme kolonların malzeme karakteristik özellikleri

Şekil 31. Betonarme Kolon Kesit

Tablo 6
Kolon Kesit Boyutları

Kolon Yüksekliği (h)	Kolon Genişliği (b)	Çekirdek Beton Yüksekliği (h _C)	Çekirdek Beton Genişliği (b _C)	Paspayı (d')
600 mm	600 mm	530 mm	530 mm	25 mm

3.5.1. Sabit Eksenel Kuvvet Altında Üç Farklı Modellerin Boyuna Donatı, Enine Donatı ve Sıklığının etkisi

Bu aşamada eksenel kuvvet sabit tutulurken, boyuna donatı ve enine donatı aralıkları etkisi incelenmiş ve Şekil 32, 33, 34, 35, 36, 37, 38 ve 39'da gösterilen 56 adet örnek çözülmüştür. METP programından elde edilen sonuçları moment-eğrilik eğrileri karşılaştırılmıştır. İncelen örneklerin eğrilik sünekliği değerleri Tablo 7'de verilmişti

Tablo 7 Analizlerden elde edilen sonuçları

	BETONARME KOLON SONUÇLARI							
		KÖKSAL	ve ERDOĞAN, MANDEI	R vd., SAATÇİOĞLU	VE RAZVİ			
Sıra No	Kolon Tipi	Beton Modelleri	İlk Akma Dayanımı M(kN.m)	İlk Akma Eğrilik κ(1/m)	Max Moment M(kN.m)	Max Eğrilik κ(1/m)		
1	Kolon C1	Köksal ve Erdoğan	327,931	0,009091	395,934	0,045000		
	N=0	Saatçioğlu ve Razvi	378,967	0,010300	422,300	0,134290		
		Mander vd.	272,784	0,009709	343,583	0,649602		
2	Kolon C1	Köksal ve Erdoğan	303,699	0,003906	759,984	0,204587		
	N=1600 kN	Saatçioğlu ve Razvi	490,203	0,004329	789,710	0,035745		
		Mander vd.	444,275	0,003953	776,476	0,163146		
	Kolon C2	Köksal ve Erdoğan	302,412	0,003891	745,446	0,204800		
3	N=1600 kN	Saatçioğlu ve Razvi	483,073	0,004274	765,039	0,030345		
		Mander vd.	442,076	0,003937	763,110	0,096923		
	Kolon C3	Köksal ve Erdoğan	302,650	0,003891	731,587	0,124370		
4	N=1600 kN	Saatçioğlu ve Razvi	472,017	0,004184	749,309	0,031811		
		Mander vd.	441,780	0,003937	753,885	0,068869		
	Kolon C4	Köksal ve Erdoğan	304,12	0,003906	726,375	0,105833		
5	N=1600 kN	Saatçioğlu ve Razvi	463,739	0,004115	739,592	0,029197		
		Mander vd.	442,388	0,003937	747,039	0,055284		
	Kolon C5	Köksal ve Erdoğan	304,653	0,003906	721,671	0,105512		
6	N=1600 kN	Saatçioğlu ve Razvi	458,068	0,004065	732,997	0,028252		
		Mander vd.	443,398	0,003953	741,618	0,047442		
	Kolon C6	Köksal ve Erdoğan	306,229	0,003922	717,127	0,102273		
7	N=1600 kN	Saatçioğlu ve Razvi	454,147	0,004032	728,616	0,027755		
		Mander vd.	444,636	0,003953	737,433	0,041791		
	Kolon C7	Köksal ve Erdoğan	307,795	0,003937	711,164	0,102878		
8	N=1600 kN	Saatçioğlu ve Razvi	451,270	0,004016	725,645	0,025263		
		Mander vd.	445,907	0,003968	734,082	0,034571		

Tablo 8 Betonarme C1 kolonu malzeme özellikleri

Kesit No	Beton Sınıfı	Donatı Sınıfı	Donatı Çapı ve Adedi	Etriye Çapı ve Aralığı	Eksenel Kuvvet
Kolon C1	C30	S420	12Φ20	$\Phi 10/50 \ mm$	0 kN

Şekil 32. Sabit eksenel kuvvet altında, üç farklı modellerin M – ĸ ilişkileri karşılaştırılması

Tablo 9 Betonarme C1 kolonu malzeme özellikleri

Kesit No	Beton Sınıfı	Donatı Sınıfı	Donatı Çapı ve Adedi	Etriye Çapı ve Aralığı	Eksenel Kuvvet
Kolon C1	C30	S420	12Φ20	$\Phi 10/50mm$	1600 kN

Şekil 33. Sabit eksenel kuvvet altında, üç farklı modellerin M – ĸ ilişkileri karşılaştırılması

Tablo 10 Betonarme C2 kolonu malzeme özellikleri

Kesit No	Beton Sınıfı	Donatı Sınıfı	Donatı Çapı ve Adedi	Etriye Çapı ve Aralığı	Eksenel Kuvvet
Kolon C2	C30	S420	12Φ20	$\Phi 10/75mm$	1600 kN

Şekil 34. Sabit eksenel kuvvet altında, üç farklı modellerin M – kilişkileri karşılaştırılması

Tablo 11 Betonarme C3 kolonu malzeme özellikleri

Kesit No	Beton Sınıfı	Donatı Sınıfı	Donatı Çapı ve Adedi	Etriye Çapı ve Aralığı	Eksenel Kuvvet
Kolon C3	C30	S420	12¢20	$\Phi 10/100~mm$	1600 kN

Şekil 35. Sabit eksenel kuvvet altında, üç farklı modellerin M – ĸ ilişkileri karşılaştırılması

Tablo 12 Betonarme C4 kolonu malzeme özellikleri

Kesit No	Beton Sınıfı	Donatı Sınıfı	Donatı Çapı ve Adedi	Etriye Çapı ve Aralığı	Eksenel Kuvvet
Kolon C4	C30	S420	12Φ20	Φ10/125 mm	1600 kN

Şekil 36. Sabit eksenel kuvvet altında, üç farklı modellerin M – ĸ ilişkileri karşılaştırılması

Tablo 13 Betonarme C5 kolonu malzeme özellikleri

Kesit No	Beton Sınıfı	Donatı Sınıfı	Donatı Çapı ve Adedi	Etriye Çapı ve Aralığı	Eksenel Kuvvet
Kolon C5	C30	S420	12Φ20	Φ10/150 mm	1600 kN

Şekil 37. Sabit eksenel kuvvet altında, üç farklı modellerin M – ĸ ilişkileri karşılaştırılması

Tablo 14 Betonarme C6 kolonu malzeme özellikleri

Kesit No	Beton Sınıfı	Donatı Sınıfı	Donatı Çapı ve Adedi	Etriye Çapı ve Aralığı	Eksenel Kuvvet
Kolon C6	C30	S420	12Φ20	Φ10/175 mm	1600 kN

Şekil 38. Sabit eksenel kuvvet altında, üç farklı modellerin M – ĸ ilişkileri karşılaştırılması

Tablo 15 Betonarme C7 kolonu malzeme özellikleri

Kesit No	Beton Sınıfı	Donatı Sınıfı	Donatı Çapı ve Adedi	Etriye Çapı ve Aralığı	Eksenel Kuvvet
Kolon C7	C30	S420	12Φ20	Φ10/200 mm	1600 kN

Şekil 39. Sabit eksenel kuvvet altında, üç farklı modellerin M – ĸ ilişkileri karşılaştırılması

Betonarme kolon kesitlerin moment-eğrilik ilişkisi araştırmak amacıyla üç farklı beton modeli (Köksal, Saatçioğlu ve Razvi ve Mander vd.,) METP programı kullanılarak belirlenmiş ve grafiksel olarak Şekil 32, 33, 34, 35, 36, 37, 38 ve 39'da gösterilmiştir. Betonarme farklı kolon kesitlerin davranışını belirlemek için betonarme elemanların tasarım parametreleri incelenmiştir. Moment-eğrilik ilişkileri grafiksel olarak verilen betonarme kolon kesitleri sabit boyutlara sahiptir. İncelenen kesitler yazılan METP programı ile analize edilerek moment-eğrilik ilişkisi oluşturulmuştur. Malzeme sınıfında karşılaştırma kriteri olarak boyuna ve enine donatı oranları seçilmiş ve betonarme kolon eksenel kuvvetinin sabit ve 1600 kN olduğu kabul edilmiştir. Bu bağlamda kolon kesitlerin enine donatı aralığı ve eksenel kuvvet etkisi incelenmiştir. Analizlerden elde edilen sonuçları Tablo 7'de gösterilmiştir.

Kolon kesitindeki enine donatı çapı sabit tutulurken enine donatı aralığı arttıkça moment kapasitesinin azaldığı gözlemlenmiştir. Her ne kadar enine donatı aralığının azaltılmasının moment kapasitesindeki artışları ihmal edilebilecek düzeyde olsa da bu aralığın süneklik üzerinde büyük etkisi olduğu görülmüş ve tasarım yapılırken dikkate alınmasının performans analizleri açısından son derece önemli olacağı sonucuna varılmıştır.

Şekil 40. Üç farklı modellerin analizlerden elde edilen ilk akma eğrilik değerleri

Şekil 40'te görülebileceği üzere kolon kesitindeki eksenel yük seviyesi sabit tutup, enine donatı aralıkları değiştirerek ilk akma moment-eğrilik ilişkileri incelenmiştir.

Analizlerden elde edilen sonuca göre eksenel kuvvet sıfır durumunda ilk akma eğrilik değerler birberine çok yakın olduğunu ve aynı şekilde eksenel kuvvet arttığında ilk akma eğirlik kapasitisine ise binde dört kadar bir farklılık içinde olduğu gözlemlenmektedir. Bu bağlamda her üç modelden elde edilen ilk akma değerleri çok yakın değerleri sahip olduğunu söylenebilir.

Şekil 41. Üç farklı modellerin analizlerden elde edilen ilk akma moment değerleri

Dolaysıyla Şekil 41'de gösterilen ilk akma momen değerleri baktığımızda Mander ve Saacioğlu modellerinin oldukça yakın değeler verdiği söylenebilir. Bu bağlamda kolon kesitindeki enine donatı aralığı arttığında moment kapasitesinin de azaldığı gözlemlenmiştir. Köksal ve Atacan modelindeki kuşatma basıncı hesaplanmasına getirdikleri farklı yaklaşımın bu sonuçlara neden olduğu rahatlıkla söylenebilir. Genel olarak bu modelden elde edilen kuşatma basıncı değerleri daha düşük olmaktadır.

DÖRDÜNCÜ BÖLÜM SAYISAL UYGULAMALAR

Tezin bu bölümünde, betonarme kolonların moment-eğrilik ilişkileri için Mander beton modeli yöntemi kullanılarak yapılan parametrik çalışmada 112 örnek kesiti analiz edilerek elde edilen sonuçlar değerlendirilmiştir. Analizlerde METP programı kullanılmış ve sonuçları SEMAp program ile de karşılaştırılmıştır.

4.1. Moment-Eğrilik İlişkileri Kapsamında Farklı Özellikli Kolonların Karşılaştırılması

Boyuna donatı oranı ve enine donatı oranının etkisini araştırmak için (500mm×500mm) boyutlarında iki farklı boyuna donatı konfigürasyonuna sahip 14 adet betonarme kolon için enine donatı miktarındaki değişiminin davranışa etkişi incelenmiştir. TBDY-2018 yönetmeliğine uygun olacak şekilde tüm kolon modelleri için beton sınıfı C30 ve donatı sınıfı S420 olarak seçilmiştir. Tablo 16 ve Tablo 32'de seçilen malzemelere ait çalışmada kullanılan karakteristik değerler verilmiştir. Tablo 18, 20, 22, 24, 26, 28, 30, 34, 36, 38, 40, 42, 44, 46 ve 49'de gösterilen farklı boyuna donatı miktarı ($8\Phi 20$ ve $12\Phi 20$), farklı enine donatı çapları (Φ8 ve Φ10) ve farklı etriye aralıkları (50mm, 75mm, 100mm, 125mm, 150mm, 175mm ve 200mm) parametrik çalışma için seçilmiştir. Kolonlar için sekiz farklı normal kuvvet seviyesi değeri N1-N8 (0 kN, 2200kN, 2000kN, 1800kN, 1600kN, 1400kN,1200kN ve 1000kN) ve N9-N16 (0 kN, 2200kN, 2000kN, 1800kN, 1600kN, 1400kN,1200kN ve 1000kN) için bulunan eğrilerin sonuçları incelenmiştir ve elde edilen sonuçları, METP ve SEMAp program ile karşılaştırılmıştır. Yapılan çalışmada çekirdek beton için Mander sargılı beton modeli kullanılacaktır. Mander beton modeli; fretli, dikdörtgen kuşatma donatılı, dairesel veya dikdörtgen kesitli yapı elemanlarının monotonik veya çevrimsel yükler altındaki eksenel davranışlarını tanımlamak amacıyla geliştirilmiştir. Modellerin etkinliğini çeşitli kolon deneyleri ile sınamışlardır. Bu deneylerde kare kolonların statik ve dinamik yük etkileri altındaki davranışları araştırılmıştır. Bu model betonarme kolon analizlerinde zaman içinde en çok tercih edilen modellerin biri olmuştur. Türkiyede deprem yönetmeliğinde de 2007 yılından beri yer almaktadır.

4.2. METP ve SEMAp Programı Kullanılarak Moment-Eğrilik İlişkilerinin Hesaplanması

Kesit ve malzeme özellikleri bilinen belirli bir betonarme kesitin $M - \kappa$ ilişkisinin bulunması için el ile hesap yapılması mümkündür. Ancak, bu ilişkinin çekme donatısının akma anına ve en büyük beton basınç birim şekil değiştirmesine karşılık gelecek şekilde kabaca ifade edilmesi bile, kuvvet dengesinin kurulması için gereken tarafsız eksen yeri için yapılacak birçok deneme-yanılma işlemi nedeni ile çok vakit alıcı bir yol olmaktadır. Bu nedenle, önceden bahsedilen $M - \kappa$ ilişkisinin bilgisayar program yardımı ile hatasız ve istenilen hassasiyette elde edilmesi en etkin yoldur.

4.3. Enine Donatı Sıklığının ve Eksenel Kuvvet Etkisi

Bu aşamada farklı etriye aralıkları sahip kolon kesitlerin eksenel kuvvet etkisi incelenmiş ve Şekil 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56 ve 57'de gösterilen 56 adet örnek çözülmüştür. METP ve SEMAp programından elde edilen sonuçları momenteğrilik eğrileri karşılaştırılmıştır. İncelen örneklerin eğrilik sünekliği değerleri Tablo 19, 21, 23, 25, 27, 29 ve 31'da verilmiştir.

Tablo16

Betonarme kolonların malzeme karakteristik özellikleri								
Malzeme Sınıfı	Değerler							
	Kuşatılmamış beton birim deformasyon (ε_{co})	0.002						
Beton: C30	Betondaki en büyük birim deformasyon (ε_{cu})	0.0035						
	Beton kapasite dayanımı (f_{su})	30 MPa						
	Çeliğin akma birim deformasyon (ε_{sy})	0.0021						
Donatı: 420	Donatı kopma gerilmesine karşılık gelen birim deformasyon (ε_{sp})	0.008						
	Donatı çeliğinde kopma birim deformasyon (ϵ_{su})	0.08						
	Karakteristik çelik akma dayanımı (f_{yk})	420 MPa						

Şekil 42. Betonarme Kolon Kesit

Tablo 17
Kolon Kesit Boyutları

Kolon Yüksekliği (h)	Kolon Genişliği (b)	Çekirdek Beton Yüksekliği (h _C)	Çekirdek Beton Genişliği (b _C)	Paspayı (d')
500 mm	500 mm	434 mm	434 mm	25 mm

Dega Gerundun Matterne Keit Gerundun Matterne Keit Gerundun Matterne Keit Gerundun Matterne Keit Gerundun Matterne Keit Gerundun Matterne Keit Gerundun Matterne Keit Gerundun Matterne Keit Gerundun Matterne Keit Gerundun	Ħ	Unti	led - SEMA	p						- 0 X
C C C C C C C C C C C C C C C C C C C	C	osya	Görünüm	Malze	me	Kesit	Göster	Mafsal	İşlem Yardım	
CELİK MALZEME BİLGİLERI: DONATILAR Bar ID Bar Zap Bar y Akma Dayanımı +420000.0000 01 20.0 -0.2070 -0.2070 Basing Cayanımı =30000 02 20.0 0.0000 -0.2070 Elastisite Modulu =2000000000 00 03 20.0 -0.2070 -0.2070 Elastisite Modulu =2000000000 00 03 20.0 -0.2070 0.2070 BETON MALZEME BİLGİLERI: 06 20.0 0.0000 2070 0.2070 Basınç Dayanımı =30000.00000 07 20.0 -0.2070 0.0000 Celkre Dayanımı =1917 0.28951 - - 0.03500 - 20.0 0.2070 0.0000 S&R Modeli K3 =0.950 - - - 0.2070 0.0000 - 20.0 -	T	2 6		i		œ		ilia c→1	1 🔢 σε μφ μν με 🔚 🛯 🔐 🕅 🚱 🛄 📜 [σ.]>, 📾 🖉 💷 🛤	
Lp = 0.2587								·	Image: Dec Med MNI ME Image: Dec Med MNI ME Image: Dec Med MNI ME Image: Dec Med MNI MI Dec MNI MI DEC MNI MI DE	

Şekil 43. SEMAp programında Mander beton modeli veri giriş

Kesit No	Beton Sınıfı	Donatı Sınıfı	Donatı Çapı ve Adedi	Etriye Çapı ve Aralığı	Eksenel Kuvvet
					N=0 kN
					N= 2200 kN
					N= 2000 kN
Kolon C1	C30	S420	8 Φ 20	$\Phi 8/50~mm$	N=1800 kN
					N=1600 kN
					N= 1400 kN
					N= 1200 kN
					N= 1000 kN

Tablo 18 Betonarme C1 kolonu malzeme özellikleri

Tablo 19 Analizlerden elde edilen sonuçları

	BETONARME KOLON KESİT SONUÇLARI									
	MANDER KUŞATILMIŞ BETON MODELİ									
Kolon Program İlk Akma İlk Akma Max M No Tipi Tipi Dayanımı Eğrilik Moment Eg M(kN.m) φ(1/m) M(kN.m) φ										
1	C1- N0	METP SEMAp METP	210,401 92,160 228,144	0,01266 0,00289 0,00266	231,553 233,847 550,815	0,67250 0,07817 0,05743				
2	C1-N1	SEMAp METP	169,702 237,636	0,00116 0,00291	547,591 532,938	0,01615 0,05999				
3	C1- N2	SEMAp METP	172,129 244,322	0,00118 0,00321	531,717 512,906	0,01728 0,06687				
4	C1-N3	SEMAp METP	187,181 248,425	0,00131 0,00356	514,721 490,528	0,02038 0,07525				
5	C1-N4	SEMAp METP	192,288 250,535	0,00148 0,00397	497,022 466,020	0,02190 0,08647				
6	C1-N5	SEMAp METP	195,276 251,511	0,00169 0,00446	475,476 439,216	0,02181 0,09247				
7	C1-N6	SEMAp METP	149,647 252,165	0,00114 0,00505	447,155 410,165	0,02086 0,12303				
8	C1-N7	SEMAp	193,031	0,00226	416,771	0,02444				

4.3.1. Kolon modellerinin Moment-Eğrilik ilişkileri karşılaştırılması

Şekil 44. SEMAp ve METP dan elde edilen moment-eğrilik ilişkileri karşılaştırılması

Şekil 45. SEMAp ve METP dan elde edilen moment-eğrilik ilişkileri karşılaştırılmas

Kesit No	Beton Sınıfı	Donatı Sınıfı	Donatı Çapı ve Adedi	Etriye Çapı ve Aralığı	Eksenel Kuvvet
					0 kN
					2200 kN
					2000 kN
Kolon C2	C30	S420	8 Φ 20	$\Phi 8/75~mm$	1800 kN
					1600 kN
					1400 kN
					1200 kN
					1000 kN

Tablo 20 Betonarme C2 kolonu malzeme özellikleri

Tablo 21 Analizlerden elde edilen sonuçları

	MANDER KUŞATILMIŞ BETON MODELİ									
No	Kolon Program İlk Akma İlk Akma Max Max No Tipi Tipi Dayanımı Eğrilik Moment Eğrili M(kN.m) φ(1/m) M(kN.m) φ(1/n									
1	C2 N0	METP	210,657	0,01266	230,968	0,42444				
1	C2- NU	SEMAp	104,476	0,00328	231,098	0,04278				
		METP	228,866	0,00267	531,633	0,04393				
2	C2-N1	SEMAp METP	107,543 238,317	0,00074 0,00292	544,447 517,150	0,01474 0,04074				
3	C2- N2	SEMAp	126.075	0.00085	528,602	0.01682				
4		METP	244,954	0,00322	499,644	0,04876				
5	C2-N3	SEMAp METP	148,509	0,00099	511,793	0,01808				
5	C2-N4	SEMAp	160,099	0,00337	494,012	0,03022				
6		METP	251,073	0,00398	457,335	0,05512				
7	C2-N5	SEMAp METP	168,026 251,993	0,00125 0,00446	474,386 432,383	0,02122 0,06538				
8	C2-N6	SEMAp METP	168,007 252,629	0,00147	447,465 404,994	0,02227 0.06857				
0	C2-N7	SEMAp	168,866	0,00173	416,454	0,02512				

Şekil 46. SEMAp ve METP dan elde edilen moment-eğrilik ilişkileri karşılaştırılması

Şekil 47. SEMAp ve METP dan elde edilen moment-eğrilik ilişkileri karşılaştırılması

Kesit No	Beton Sınıfı	Donatı Sınıfı	Donatı Çapı ve Adedi	Etriye Çapı ve Aralığı	Eksenel Kuvvet
					0 kN
					2200 kN
					2000 kN
Kolon C3	C30	S420	8 Φ 20	Φ8/100 mm	1800 kN
					1600 kN
					1400 kN
					1200 kN
					1000 kN

Tablo 22 Betonarme C3 kolonu malzeme özellikleri

Tablo 23 Analizlerden elde edilen sonuçları

	MANDER KUŞATILMIŞ BETON MODELİ									
No	Kolon Tipi	Program Tipi	İlk Akma Dayanımı M(kN.m)	İlk Akma Eğrilik φ(1/m)	Max Moment M(kN.m)	Max Eğrilik φ(1/m)				
		METP	211,153	0,01266	230,623	0,42526				
1	C3- N0	SEMAp	147,137	0,00462	231,153	0,04147				
		METP	230,714	0,00268	514,845	0,03466				
2	C3-N1	SEMAp METP	97,324 239,995	0,00066 0,00293	543,002 505,565	0,01465 0,04094				
3	C3- N2	SEMAp	115,696	0,00078	527,352	0,01574				
4		METP	246,460	0,00324	491,254	0,03569				
5	C3-N3	SEMAp METP	133,874 250,255	0,00089 0,00358	510,543 472,890	0,01698 0,03888				
6	C3-N4	SEMAp METP	151,513 252,229	0,00101 0,00400	492,898 451,732	0,01987 0,04249				
7	C3-N5	SEMAp METP	162,891 253,069	0,00115 0,00448	474,007 428,121	0,02075 0,04999				
8	C3-N6	SEMAp METP	160,665 253,645	0,00137 0,00508	447,013 401,678	0,02335 0,06041				
	C3-N7	SEMAp	162,234	0,00161	416,295	0,02370				

Şekil 48. SEMAp ve METP dan elde edilen moment-eğrilik ilişkileri karşılaştırılması

Şekil 49. SEMAp ve METP dan elde edilen moment-eğrilik ilişkileri karşılaştırılması

Kesit No	Beton Sınıfı	Donatı Sınıfı	Donatı Çapı ve Adedi	Etriye Çapı ve Aralığı	Eksenel Kuvvet
					0 kN
					2200 kN
					2000 kN
Kolon C4	C30	S420	8 Φ 20	Φ8/125 mm	1800 kN
					1600 kN
					1400 kN
					1200 kN
					1000 kN

Tablo 24 Betonarme C4 kolonu malzeme özellikleri

Tablo 25 Analizlerden elde edilen sonuçları

	MANDER KUŞATILMIŞ BETON MODELİ									
No	Kolon Tipi	Program Tipi	İlk Akma Dayanımı M(kN.m)	İlk Akma Eğrilik φ(1/m)	Max Moment M(kN.m)	Max Eğrilik φ(1/m)				
		METP	211,682	0,01266	430,405	0,31600				
1	C4- N0	SEMAp	120,819	0,00379	231,115	0,04055				
		METP	232,718	0,00270	504,289	0,03048				
2	C4-N1	SEMAp	46,498	0,00031	542,392	0,01310				
		METP	241,814	0,00295	494,647	0,03445				
3	C4- N2	SEMAp	64,519	0,00043	526,853	0,01526				
4		METP	247,932	0,00325	484,318	0,03654				
	C4-N3	SEMAp	82,537	0,00054	509,890	0,01707				
5		METP	251,619	0,00360	468,089	0,03279				
	C4-N4	SEMAp	100,436	0,00065	492,930	0,02026				
6		METP	253,488	0,00402	447,967	0,03641				
	C4-N5	SEMAp	119,820	0,00077	473,77	0,02068				
7		METP	254,235	0,00450	425,155	0,04101				
	C4-N6	SEMAp	132,668	0,00089	446,976	0,02137				
8		METP	254,740	0,00510	339,473	0,04990				
	C4-N7	SEMAp	132,402	0,00109	416,600	0,02626				

Şekil 50. SEMAp ve METP dan elde edilen moment-eğrilik ilişkileri karşılaştırılması

Şekil 51. SEMAp ve METP dan elde edilen moment-eğrilik ilişkileri karşılaştırılması

Kesit No	Beton Donati Dona Sınıfı Sınıfı ^{ve A}		Donatı Çapı ve Adedi	Etriye Çapı ve Aralığı	Eksenel Kuvvet
					0 kN
					2200 kN
					2000 kN
Kolon C5	C30	S420	8 Φ 20	$\Phi 8/150~mm$	1800 kN
					1600 kN
					1400 kN
					1200 kN
					1000 kN

Tablo 26 Betonarme C5 kolonu malzeme özellikleri

Tablo 27 Analizlerden elde edilen sonuçları

	BETONARME KOLON KESİT SONUÇLARI										
	MANDER KUŞATILMIŞ BETON MODELİ										
No	Kolon Tipi	Program Tipi	İlk Akma Dayanımı M(kN.m)	İlk Akma Eğrilik φ(1/m)	Max Moment M(kN.m)	Max Eğrilik φ(1/m)					
1	C5 N0	METP	211,288	0,01282	230,206	0,23238					
1	C3- NU	SEMAp METP	130,701 234,675	0,00410 0.00271	231,630 496,885	0,03757 0.02505					
2	C5-N1	SEMAp METP	67,370 243,576	0,00045 0,00297	542,231 487,659	0,01301 0,02892					
3 4	C5- N2	SEMAp METP	84,973 249 504	0,00056	526,740 477 267	0,01402					
5	C5-N3	SEMAp	102,967	0,00068	509,634	0,01622					
5	C5-N4	SEMAp	121,358	0,00079	491,800	0,01812					
0	C5-N5	SEMAp	138,139	0,00403	443,180	0,03333					
/	C5-N6	SEMAp	255,343 146,810	0,00452	422,869 446,796	0,03639					
8	C5-N7	METP SEMAp	255,753 143,370	0,00510 0,00129	397,833 416,700	0,04037 0,02465					

Şekil 52. SEMAp ve METP dan elde edilen moment-eğrilik ilişkileri karşılaştırılması

Şekil 53. SEMAp ve METP dan elde edilen moment-eğrilik ilişkileri karşılaştırılması

Kesit No	Beton Sınıfı	eton Donatı Donatı Çapı E nıfı Sınıfı ^{ve Adedi}		Etriye Çapı ve Aralığı	Eksenel Kuvvet
					0 kN
					2200 kN
					2000 kN
Kolon C6	C30	S420	8 Φ 20	Φ8/175 mm	1800 kN
					1600 kN
					1400 kN
					1200 kN
					1000 kN

Tablo 28 Betonarme C6 kolonu malzeme özellikleri

Tablo 29 Analizlerden elde edilen sonuçları

	MANDER KUŞATILMIŞ BETON MODELİ									
No	Kolon Tipi	Program Tipi	İlk Akma Dayanımı M(kN.m)	İlk Akma Eğrilik φ(1/m)	Max Moment M(kN.m)	Max Eğrilik φ(1/m)				
		METP	211,735	0,01282	230,049	0,18181				
1	C6- N0	SEMAp	119,501	0,00374	231,980	0,03849				
		METP	236,198	0,00272	491,643	0,02362				
2	C6-N1	SEMAp	45,660	0,00030	541,892	0,01293				
		METP	244,992	0,00298	482,353	0,02577				
3	C6- N2	SEMAp	62,882	0,00041	526,367	0,01439				
4		METP	250,808	0,00328	471,665	0,02994				
	C6-N3	SEMAp	80,721	0,00053	509,450	0,01649				
5		METP	254,206	0,00364	460,109	0,03277				
	C6-N4	SEMAp	98,906	0,00064	491,742	0,01833				
6		METP	255,780	0,00405	442,852	0,03120				
	C6-N5	SEMAp	118,280	0,00076	473,266	0,02092				
7		METP	256,347	0,00455	421,292	0,03360				
	C6-N6	SEMAp	131,125	0,00087	446,687	0,02070				
8		METP	256,696	0,00513	396,537	0,03633				
	C6-N7	SEMAp	131,604	0,00107	416,770	0,01923				

Şekil 54. SEMAp ve METP dan elde edilen moment-eğrilik ilişkileri karşılaştırılması

Şekil 55. SEMAp ve METP dan elde edilen moment-eğrilik ilişkileri karşılaştırılması

Kesit No	Beton Sınıfı	Donatı Sınıfı	Donatı Çapı ve Adedi	Etriye Çapı ve Aralığı	Eksenel Kuvvet
					0 kN
					2200 kN
					2000 kN
Kolon C7	C30	S420	8 Φ 20	$\Phi 8/200~mm$	1800 kN
					1600 kN
					1400 kN
					1200 kN
					1000 kN

Tablo 30 Betonarme C7 kolonu malzeme özellikleri

Tablo 31 Analizlerden elde edilen sonuçları

	MANDER KUŞATILMIŞ BETON MODELİ									
No	Kolon Tipi	Program Tipi	İlk Akma Dayanımı M(kN.m)	İlk Akma Eğrilik φ(1/m)	Max Moment M(kN.m)	Max Eğrilik φ(1/m)				
1	C7- N0	METP SEMAp	212,132 133,001	0,01282 0,00417	229,994 231,165	0,19454 0,04202				
2	C7-N1	METP SEMAp	237,914 72,518	0,00273 0,00048	487,742 541,919	0,02071 0,01313				
3	C7- N2	METP SEMAp METP	246,282 90,450 251 988	0,00299 0,00060 0,00329	487,282 526,840 467,685	0,02273 0,01499 0,02745				
4	C7-N3	SEMAp METP	108,508 255,277	0,00071 0,00365	509,560 456,515	0,01664 0,03031				
5	C7-N4	SEMAp METP	126,659 256,754	0,00082 0,00407	491,570 441,172	0,01800 0,02888				
6	C7-N5	SEMAp METP	142,758 257,239	0,00094 0,00457	473,180 419,930	0,02096 0,02914				
7	C7-N6	SEMAp METP	148,769 257,534	0,00110 0,00515	446,760 395,631	0,02095 0,03423				
8	C7-N7	SEMAp	146,119	0,00134	416,950	0,01905				

Şekil 56. SEMAp ve METP dan elde edilen moment-eğrilik ilişkileri karşılaştırılması

Şekil 57. SEMAp ve METP dan elde edilen moment-eğrilik ilişkileri karşılaştırılması

Şekil 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56 ve 57'de gösterilen grafiklerde de görülebileceği üzere kolon kesitindeki eksenel yük seviyesi değiştirilerek, farklı enine donatı aralıklarına sahip kolonların moment-eğrilik ilişkisine etkisi incelenmiştir. Grafiklerden görüldüğü üzere METP ve SEMAp programından elde edilen sonuçları bakıldığımızda moment kapasitesinin farklı olduğunu görülmektedir. Dolaysıyla kesitindeki enine donatı sıklığının ve eksenel yük seviyesi arttığında SEMAp programından elde edilen sonuca göre moment kapasitesinin belli bir kısımdan sonra azalmakta, METP ise tam ters devam ettikleri görülmektedir. Analiz sonuçları değerlendirildiğinde her iki programından elde edilen değerleri kolon kesitindeki ilk akma moment-eğrilik, maksimum moment-eğrilik kapasitesinin nerdeyse çok yakın değerler olduğunu söylenilebilir. Bu bağlamda grafiklerden elde edilen sonuca göre kolon kesitindeki eksenel yük seviyesi arttığında moment kapasitesinin de azaldığı görülmektedir.

4.4. Boyuna donatı, Etriye Sıklığının ve Eksenel Kuvvet Etkisi

Bu aşamada boyuna donatı, farklı etriye aralıkları sahip kolon kesitlerin eksenel kuvvet etkisi incelenmiş ve Şekil 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72 ve 73'te gösterilen 56 adet örnek çözülmüştür. METP ve SEMAp programından elde edilen sonuçları moment-eğrilik eğrileri karşılaştırılmıştır. İncelen örneklerin eğrilik sünekliği değerleri Tablo 35, 37, 39, 41, 43, 45 ve 47'te verilmiştir.

Betonarme kolonların malzeme karakteristik özellikleri								
Malzeme Sınıfı	Malzeme Karakteristik Özellikleri	Değerler						
	Kuşatılmamış beton birim deformasyon (ε_{co})	0.002						
Beton: C30	Betondaki en büyük birim deformasyon (ε_{cu})	0.0035						
	Beton kapasite dayanımı (f_{su})	30 MPa						
	Çeliğin akma birim deformasyon (ε_{sy})	0.0021						
Donatı: 420	Donatı kopma gerilmesine karşılık gelen birim deformasyon (ε_{sp})	0.008						
	Donatı çeliğinde kopma birim deformasyon (ε_{su})	0.08						
	Karakteristik çelik akma dayanımı (f_{yk})	420 MPa						

Tablo 32

В	etonarme	kolo	nların	ma	lzeme	kara	kter	istik	öze	lli	kl	e
---	----------	------	--------	----	-------	------	------	-------	-----	-----	----	---

Şekil 58. Betonarme Kolon Kesit

Tablo 33	
Kolon Kesit Boyutları	

Kolon Yüksekliği (h)	Kolon Genişliği (b)	Çekirdek Beton Yüksekliği (h _c)	Çekirdek Beton Genişliği (b _C)	Paspayı (d')
500 mm	500 mm	434 mm	434 mm	25 mm

				_		7							_		
🔠 Ur	titled	- SEMA	6												a x
Dosya	Ge	örünüm	Malzeme	Kesit	Göster	Mafsal	İşlem Yardım								
D	i 🍋	N ^m	1 8		H	🖄 C-JT	🔢 ФЕМф ММ МЕ 🗮 🔡 🖼 🛄 😽		🗏 xls 🔠						
										DO	NATILAR				
							CELİK MALZEME BİLGİLERİ		Bar I	D Bar Cap	Bar x	Bar y			
							Åkma Davanımı =420000.00000		01	20.0	-0.2050	-0.2050			
							Kopma Uzamasi =0.0800		02	20.0	-0.0683	-0.2050			
							Elastisite Modülü =200000000.000		03	20.0	0.0683	-0.2050			
									04	20.0	0.2050	-0.2050			
									05	20.0	-0.2050	0.2050			
							BETON MALZEME BILGILERI:		06	20.0	-0.0683	0.2050			
							Basınç Dayanımı =30000.00000		07	20.0	0.0683	0.2050			
	_	_					Ezilme Kısalması =0.0020		08	20.0	0.2050	0.2050			
				1 I I		•	Çekme Dayanımı =1917.028951		09	20.0	-0.2050	-0.0683			
							Elastisite Modülü =31800983.119		10	20.0	-0.2050	0.0683			
							Eu85 =0.003500		11	20.0	0.2050	-0.0683			
							S&R Modeli k3 =0.850		12	20.0	0.2050	0.0683			
						1									
							Kesit Viikeekliäi	-0.500							
							Kosit Conicliăi	-0.500							
						- I	Cekirdek Betonu Yüksekliği	=0.440							
							Čekirdek Betonu Genisliči	=0.440							
							X Yönünde Tutulan Donatılar Arası	=0.147							
				~			Y Yönünde Tutulan Donatılar Arası	=0.147							
						-	Etriye Donatı Çubugu Çapı	=10.000	mm						
							Etriye Aralığı	=0.050							
							Yatay Donati Uzunluğu =3.600 (Bir Ke	sitte Toplam	1)						
							X Yönünde Uzanan Toplam Etriye Alanı	=0.00031	42						
							Y Yönünde Uzanan Toplam Etriye Alanı	=0.00031	42						
							Maksimum Eksenel Basınç Yükü	=7500.000	0						
							Maksimum Eksenel Beton Çekme Yuku	=479.257	20						
							Girlien Eksenel Yuk	=2200.00	00						
							In Doyuna Donati Adedi	- 12							
							Lp	- 0:2307							
														Aktif Birim (K,U): kN,m	NUM

Şekil 59. SEMAp programında Mander beton modeli veri giriş

Kesit No	Beton Sınıfı	Donatı Sınıfı	Donatı Çapı ve Adedi	Etriye Çapı ve Aralığı	Eksenel Kuvvet
					0 kN
					2200 kN
					2000 kN
Kolon C8	C30	S420	12 Φ 20	Φ10/50 mm	1800 kN
					1600 kN
					1400 kN
					1200 kN
					1000 kN

Tablo 34 Betonarme C8 kolonu malzeme özellikleri

Tablo 35 Analizlerden elde edilen sonuçları

MANDER KUŞATILMIŞ BETON MODELİ						
No	Kolon Tipi	Program Tipi	İlk Akma Dayanımı M(kN.m)	İlk Akma Eğrilik φ(1/m)	Max Moment M(kN.m)	Max Eğrilik φ(1/m)
		METP	272,784	0,00971	343,583	0,64960
1	C8- N0	SEMAp	280,276	0,00758	336,736	0,03591
		METP	251,000	0,00279	673,463	0,11725
2	C8-N1	SEMAp	298,026	0,00243	647,406	0,12463
		METP	259,954	0,00305	652,114	0,13057
3	C8- N2	SEMAp	302,451	0,00264	627,242	0,12001
4		METP	266,462	0,00333	628,993	0,14738
	C8-N3	SEMAp	303,919	0,00289	604,942	0,12801
5		METP	271,527	0,00368	604,206	0,15215
	C8-N4	SEMAp	303,952	0,00316	580,883	0,15081
6		METP	275,226	0,00405	577,623	0,17521
	C8-N5	SEMAp	302,267	0,00349	555,099	0,16235
7		METP	278,677	0,00450	549,417	0,18265
	C8-N6	SEMAp	299,957	0,00385	528,032	0,02572
8		METP	282,115	0,00500	519,420	0,21698
	C8-N7	SEMAp	297,051	0,00427	503,109	0,02796

4.4.1. Kolon modellerinin Moment-Eğrilik ilişkileri karşılaştırılması

Şekil 60. SEMAp ve METP dan elde edilen moment-eğrilik ilişkileri karşılaştırılması

Şekil 61. SEMAp ve METP dan elde edilen moment-eğrilik ilişkileri karşılaştırılması
Kesit No	Beton Sınıfı	Donatı Sınıfı	Donatı Çapı ve Adedi	Etriye Çapı ve Aralığı	Eksenel Kuvvet
					0 kN
					2200 kN
					2000 kN
Kolon C9	C30	S420	12 Φ 20	Ф10/75 mm	1800 kN
					1600 kN
					1400 kN
					1200 kN
					1000 kN

Tablo 36 Betonarme C9 kolonu malzeme özellikleri

Tablo 37 Analizlerden elde edilen sonuçları

	MANDER KUŞATILMIŞ BETON MODELİ							
No	Kolon Tipi	Program Tipi	İlk Akma Dayanımı M(kN.m)	İlk Akma Eğrilik φ(1/m)	Max Moment M(kN.m)	Max Eğrilik φ(1/m)		
		METP	272,594	0,00962	341,975	0,45793		
1	C9- N0	SEMAp	163,375	0,00383	336,912	0,02923		
		METP	247,552	0,00277	646,734	0,07324		
2	C9-N1	SEMAp	142,725	0,00091	626,435	0,01571		
		METP	257,102	0,00303	629,148	0,07776		
3	C9- N2	SEMAp	142,725	0,00091	614,014	0,01661		
4		METP	263,840	0,00331	609,467	0,08824		
	C9-N3	SEMAp	142,725	0,00091	594,449	0,01787		
5		METP	269,123	0,00365	587,740	0,09433		
	C9-N4	SEMAp	149,118	0,00095	573,304	0,01929		
6		METP	273,138	0,00403	564,089	0,11074		
	C9-N5	SEMAp	161,554	0,00108	550,405	0,02095		
7		METP	276,579	0,00446	538,359	0,12041		
	C9-N6	SEMAp	161,102	0,00129	526,694	0,02281		
8		METP	280,265	0,00498	510,609	0,13209		
	C9-N7	SEMAp	164,241	0,00151	501,448	0,02489		

Şekil 62. SEMAp ve METP dan elde edilen moment-eğrilik ilişkileri karşılaştırılması

Şekil 63. SEMAp ve METP dan elde edilen moment-eğrilik ilişkileri karşılaştırılması

Kesit No	Beton Sınıfı	Donatı Sınıfı	Donatı Çapı ve Adedi	Etriye Çapı ve Aralığı	Eksenel Kuvvet
					0 kN
					2200 kN
					2000 kN
Kolon C10	C30	S420	12 Φ 20	Ф10/100 mm	1800 kN
					1600 kN
					1400 kN
					1200 kN
					1000 kN

Tablo 38 Betonarme C10 kolonu malzeme özellikleri

Tablo 39 Analizlerden elde edilen sonuçları

		BETONAR	ME KOLON KE	SİT SONUÇL	ARI	
		MANDER	KUŞATILMIŞ H	BETON MODE	ELİ	
No	Kolon Tipi	Program Tipi	İlk Akma Dayanımı M(kN.m)	İlk Akma Eğrilik φ(1/m)	Max Moment M(kN.m)	Max Eğrilik φ(1/m)
		METP	272,300	0,00962	340,879	0,35750
1	C10- N0	SEMAp	207,919	0,00489	336,889	0,03065
		METP	246,678	0,00277	627,400	0,05139
2	C10-N1	SEMAp	179,174	0,00118	622,426	0,01583
		METP	256,014	0,00302	612,399	0,05949
3	C10- N2	SEMAp	190,200	0,00125	610,513	0,01675
4		METP	263,083	0,00331	595,220	0,05931
	C10-N3	SEMAp	202,324	0,00139	593,519	0,01611
5		METP	268,424	0,00365	575,841	0,07037
	C10-N4	SEMAp	204,319	0,00158	572,551	0,01745
6		METP	272,496	0,00403	554,213	0,07471
	C10-N5	SEMAp	209,493	0,00178	549,851	0,01902
7		METP	275,991	0,00446	530,358	0,08592
	C10-N6	SEMAp	211,127	0,00202	525,400	0,02300
8		METP	279,549	0,00495	504,321	0,10147
	C10-N7	SEMAp	209,923	0,00232	500,585	0,02519

Şekil 64. SEMAp ve METP dan elde edilen moment-eğrilik ilişkileri karşılaştırılması

Şekil 65. SEMAp ve METP dan elde edilen moment-eğrilik ilişkileri karşılaştırılması

Kesit No	Beton Sınıfı	Donatı Sınıfı	Donatı Çapı ve Adedi	Etriye Çapı ve Aralığı	Eksenel Kuvvet
					0 kN
					2200 kN
					2000 kN
Kolon C11	C30	S420	12 Φ 20	Ф10/125 mm	1800 kN
					1600 kN
					1400 kN
					1200 kN
					1000 kN

Tablo 40 Betonarme C11 kolonu malzeme özellikleri

Tablo 41 Analizlerden elde edilen sonuçları

	BETONARME KOLON KESIT SONUÇLARI								
	MANDER KUŞATILMIŞ BETON MODELİ								
No	Kolon Tipi	Program Tipi	İlk Akma Dayanımı M(kN.m)	İlk Akma Eğrilik φ(1/m)	Max Moment M(kN.m)	Max Eğrilik φ(1/m)			
1	C11- N0	METP SEMAp METP	272,365 227,165 246,634	0,00962 0,00535 0,00277	340,116 336,866 610,510	0,23542 0,03095 0,05199			
2	C11-N1	SEMAp METP	204,997 256,003	0,00136 0,00302	620,152 599,655	0,01683 0,04561			
3	C11- N2	SEMAp METP	218,479 263,098	0,00150 0,00331	607,948 584,377	0,01664 0,05070			
4	C11-N3	SEMAp METP	222,100 268,461	0,00168 0,00364	591,560 566,691	0,01651 0,05706			
5	C11-N4	SEMAp METP SEMAr	227,917 272,548 220,275	0,00187 0,00403	571,543 546,718 548,740	0,01638 0,06092			
0	C11-N5	SEMAP SEMAP	230,375 276,054 230,265	0,00210	524,292	0,01946			
8	C11-N0	METP	250,365 279,618	0,00237	499,516	0,02123			
0		SEMAp	228,412	0,00270	499,883	0,02505			

Şekil 66. SEMAp ve METP dan elde edilen moment-eğrilik ilişkileri karşılaştırılması

Şekil 67. SEMAp ve METP dan elde edilen moment-eğrilik ilişkileri karşılaştırılması

Kesit No	Beton Sınıfı	Donatı Sınıfı	Donatı Çapı ve Adedi	Etriye Çapı ve Aralığı	Eksenel Kuvvet
					0 kN
					2200 kN
					2000 kN
Kolon C12	C30	S420	12 Φ 20	Ф10/150 mm	1800 kN
					1600 kN
					1400 kN
					1200 kN
					1000 kN

Tablo 42 Betonarme C12 kolonu malzeme özellikleri

Tablo 43 Analizlerden elde edilen sonuçları

	MANDER KUŞATILMIŞ BETON MODELİ							
No	Kolon Tipi	Program Tipi	İlk Akma Dayanımı M(kN.m)	İlk Akma Eğrilik φ(1/m)	Max Moment M(kN.m)	Max Eğrilik φ(1/m)		
		METP	272,628	0,00961	339,486	0,19675		
1	C12- N0	SEMAp	182,926	0,00429	336,854	0,03134		
		METP	254,450	0,00295	589,278	0,04804		
2	C12-N1	SEMAp	129,398	0,00085	617,738	0,01660		
		METP	256,719	0,00303	587,703	0,04723		
3	C12- N2	SEMAp	148,203	0,00096	606,255	0,01664		
4		METP	263,760	0,00332	575,735	0,04047		
	C12-N3	SEMAp	166,434	0,00107	591,313	0,01573		
5		METP	268,907	0,00364	559,526	0,04155		
	C12-N4	SEMAp	179,324	0,00120	570,99	0,01581		
6		METP	272,986	0,00403	540,784	0,04956		
	C12-N5	SEMAp	180,882	0,00139	548,453	0,01856		
7		METP	276,477	0,00446	519,462	0,05387		
	C12-N6	SEMAp	184,665	0,00160	524,564	0,02165		
8		METP	280,204	0,00497	495,721	0,05927		
	C12-N7	SEMAp	185,508	0,00185	499,179	0,02509		

Şekil 68. SEMAp ve METP dan elde edilen moment-eğrilik ilişkileri karşılaştırılması

Şekil 69. SEMAp ve METP dan elde edilen moment-eğrilik ilişkileri karşılaştırılması

Kesit No	Beton Sınıfı	Donatı Sınıfı	Donatı Çapı ve Adedi	Etriye Çapı ve Aralığı	Eksenel Kuvvet
					0 kN
					2200 kN
					2000 kN
Kolon C13	C30	S420	12 Φ 20	Φ10/175 mm	1800 kN
					1600 kN
					1400 kN
					1200 kN
					1000 kN

Tablo 44 Betonarme C13 kolonu malzeme özellikleri

Tablo 45 Analizlerden elde edilen sonuçları

	MANDER KUŞATILMIŞ BETON MODELİ							
No	Kolon Tipi	Program Tipi	İlk Akma Dayanımı M(kN.m)	İlk Akma Eğrilik φ(1/m)	Max Moment M(kN.m)	Max Eğrilik φ(1/m)		
		METP	272,220	0,00970	339,018	0,15794		
1	C13- N0	SEMAp	202,839	0,00476	336,862	0,02943		
		METP	242,569	0,00266	582,818	0,03684		
2	C13-N1	SEMAp	164,550	0,00108	616,820	0,01513		
		METP	257,688	0,00303	574,337	0,04134		
3	C13- N2	SEMAp	182,968	0,00119	604,921	0,01681		
4		METP	264,451	0,00332	567,397	0,04280		
	C13-N3	SEMAp	196,591	0,00132	590,255	0,01544		
5		METP	269,752	0,00366	553,677	0,03749		
	C13-N4	SEMAp	200,560	0,00150	570,788	0,01674		
6		METP	273,785	0,00404	535,893	0,04110		
	C13-N5	SEMAp	204,101	0,00170	547,831	0,01814		
7		METP	277,250	0,00448	515,606	0,04335		
	C13-N6	SEMAp	206,114	0,00194	524,170	0,02099		
8		METP	280,795	0,00497	492,645	0,05473		
	C13-N7	SEMAp	205,314	0,00222	498,788	0,02534		

Şekil 70. SEMAp ve METP dan elde edilen moment-eğrilik ilişkileri karşılaştırılması

Şekil 71. SEMAp ve METP dan elde edilen moment-eğrilik ilişkileri karşılaştırılması

Kesit No	Beton Sınıfı	Donatı Sınıfı	Donatı Çapı ve Adedi	Etriye Çapı ve Aralığı	Eksenel Kuvvet
					0 kN
					2200 kN
					2000 kN
Kolon C14	C30	S420	12 Φ 20	Φ10/200 mm	1800 kN
					1600 kN
					1400 kN
					1200 kN
					1000 kN

Tablo 46 Betonarme C14 kolonu malzeme özellikleri

Tablo 47 Analizlerden elde edilen sonuçları

	BETONARME KOLON KESİT SONUÇLARI MANDER KUŞATILMIŞ BETON MODELİ							
No	Kolon Tipi	Program Tipi	İlk Akma Dayanımı M(kN.m)	İlk Akma Eğrilik φ(1/m)	Max Moment M(kN.m)	Max Eğrilik φ(1/m)		
		METP	272,644	0,00971	338,595	0,15300		
1	C14- N0	SEMAp	177,714	0,00416	336,886	0,03078		
		METP	249,624	0,00279	570,229	0,03343		
2	C14-N1	SEMAp	121,502	0,00079	614,981	0,01555		
		METP	258,249	0,00303	564,274	0,03558		
3	C14- N2	SEMAp	140,243	0,00090	604,360	0,01646		
4		METP	265,484	0,00333	557,741	0,04183		
	C14-N3	SEMAp	158,786	0,00101	604,360	0,01615		
5		METP	270,717	0,00367	548,078	0,03852		
	C14-N4	SEMAp	172,965	0,00114	570,677	0,01670		
6		METP	274,552	0,00404	531,962	0,03706		
	C14-N5	SEMAp	176,810	0,00131	547,622	0,01912		
7		METP	278,126	0,00450	512,440	0,03999		
	C14-N6	SEMAp	178,743	0,00152	523,872	0,02180		
8		METP	281,663	0,00500	490,189	0,04605		
	C14-N7	SEMAn	180,196	0.00177	498,969	0.02488		

Şekil 72. SEMAp ve METP dan elde edilen moment-eğrilik ilişkileri karşılaştırılması

Şekil 73. SEMAp ve METP dan elde edilen moment-eğrilik ilişkileri karşılaştırılması

Şekil 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72 ve 73'te gösterilen grafiklerde de görülebileceği üzere aynı kesit boyutlarına sahip kolonlarda sadece boyuna donatı sayısının arttırılması ile eksenel yük kapasitesi değiştirilerek bu durumun moment-eğrilik ilişkisine etkisi incelenmiştir. SEMAp programından elde edilen sonuca göre moment kapasitesinin METP programına göre daha farlı olduğu gözlemlenmektedir. Bu tez kapsamında yazılan programda kolon kapasitesi hesabında ufak bir etkisi olan ve taşıma gücüne yakın tamamen etkisini kaybeden kabuk beton hesaplarda dikkate alınmamıştır. Bu nedenle diğer programın akma anına ait değerleri daha düşük çıkmaktadır. Ancak SEMAp programında süneklik kapasitesinin enine donatı aralığının artmasıyla beraber azalmakta olduğu ve METP sonuçlarında ise arttığını görülmüştür. Bu bağlamda enine donatı oranın artmasıyla betonarme kare kolonlarda eğrilik sünekliğinin artışı gözlenmektedir. Dolayısıyla yazılan programın daha gerçekçi sonuçlar verdiği söylenebilir. Ancak malzeme ve kesit şekildeğiştirmelerine konulacak gerçekçi tasarım sınırlarına ihtiyaç duyulmaktadır. Ayrıca, analiz sonuçlarına göre boyuna donatı oranındaki artışın, kesit elemanların akma ve maksimum moment kapasitelerini etkilediği sonucu varılmıştır. Bu bağlamda boyuna donatı sayısı fazla olan elemanlar, daha az boyuna donatıya sahip kesitleri göre daha sünek hale gelmektedirler. Enine donatı çapındaki değişimin ise moment kapasitesi değişimi ile doğru orantılı olmamakla beraber az miktarda da olsa maksimum moment kapasitesine bir artış olarak yansımıştır. Moment kapasitesine olan etkisine ek olarak kesit sünekliğni de önemli bir oranda arttırdığı söylenilebilir.

4.5. Sabit Eksenel Kuvvet Altında Boyuna donatı, Etriye Sıklığının Etkisi

Bu aşamada sabit eksenel kuvvet altında, iki farklı kolon kesitlerin boyuna donatı oranın etkisi, etriye çap ve aralığının etkisi incelenmiş ve Şekil 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87 ve 88'de gösterilen 98 adet örnek çözülmüştür. METP'ten elde edilen sonuçları moment-eğrilik eğrileri karşılaştırılmıştır. İncelen örneklerin değerleri Tablo 49'da verilmiştir.

Tablo 48 Kolon Kesit Boyutları

Kolon Yüksekliği (h)	Kolon Genişliği (b)	Çekirdek Beton Yüksekliği (h _C)	Çekirdek Beton Genişliği (b _C)	Paspayı (d')
500 mm	500 mm	434 mm	434 mm	25 mm

Şekil 74. Betonarme Kare Kolon Kesit

Tablo 49

Sabit eksenel kuvvet altın 7 adet betonarme kolonların kesit malzeme özellikleri

Kesit No	Beton Sınıfı	Donatı Sınıfı	Donatı Çapı ve Adedi	Etriye Çapı ve Aralığı	Eksenel Kuvvet
Kolon C1	C30	S420	8 Φ 20	Ф8/50 mm	2200 kN
Kolon C2	C30	S420	8 Φ 20	$\Phi 8/75~mm$	2000 kN
Kolon C3	C30	S420	8 Φ 20	Φ8/100 mm	1800 kN
Kolon C4	C30	S420	8 Φ 20	Φ8/125 mm	1600 kN
Kolon C5	C30	S420	8 Φ 20	Φ8/150 mm	1400 kN
Kolon C6	C30	S420	8 Φ 20	Φ 8/175 mm	1200 kN
Kolon C7	C30	S420	8 Φ 20	$\Phi 8/200~mm$	1000 kN
Kolon C8	C30	S420	12 Φ 20	Φ10/50 mm	2200 kN
Kolon C9	C30	S420	12 Φ 20	Ф10/75 mm	2000 kN
Kolon C10	C30	S420	12 Φ 20	Ф10/100 mm	1800 kN
Kolon C11	C30	S420	12Φ20	Ф10/125 mm	1600 kN
Kolon C12	C30	S420	12Φ20	Ф10/150 mm	1400 kN
Kolon C13	C30	S420	12 Φ 20	Ф10/175 mm	1200 kN
Kolon C14	C30	S420	12Ф20	Ф10/200 mm	1000 kN

4.5.1. Kolon modellerinin Moment-Eğrilik ilişkileri karşılaştırılması

Şekil 75. Sabit eksenel kuvvet, etriye çapları ve aralıkları altında moment-eğrilik ilişkileri

Şekil 76. Sabit eksenel kuvvet, etriye çapları ve aralıkları altında moment-eğrilik ilişkileri

Şekil 77. Sabit eksenel kuvvet, etriye çapları ve aralıkları altında moment-eğrilik ilişkileri

Şekil 78. Sabit eksenel kuvvet, etriye çapları ve aralıkları altında moment-eğrilik ilişkileri

Şekil 79. Sabit eksenel kuvvet, etriye çapları ve aralıkları altında moment-eğrilik ilişkileri

Şekil 80. Sabit eksenel kuvvet, etriye çapları ve aralıkları altında moment-eğrilik ilişkileri

Şekil 81. Sabit eksenel kuvvet, etriye çapları ve aralıkları altında moment-eğrilik ilişkileri

Şekil 82. Sabit eksenel kuvvet, etriye çapları ve aralıkları altında moment-eğrilik ilişkileri

Şekil 83. Sabit eksenel kuvvet, etriye çapları ve aralıkları altında moment-eğrilik ilişkileri

Şekil 84. Sabit eksenel kuvvet, etriye çapları ve aralıkları altında moment-eğrilik ilişkileri

Şekil 85. Sabit eksenel kuvvet, etriye çapları ve aralıkları altında moment-eğrilik ilişkileri

Şekil 86. Sabit eksenel kuvvet, etriye çapları ve aralıkları altında moment-eğrilik ilişkileri

Şekil 87. Sabit eksenel kuvvet, etriye çapları ve aralıkları altında moment-eğrilik ilişkileri

Şekil 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87 ve 88'de yer alan grafiklerde farklı kolon kesitlerine aynı eksenel yük uygulanarak, moment-eğrilik ilişkisine etkileri incelenmiştir. Kolon kesitleri arasındaki farklılık, boyuna donatı oranı, kesitlerde kullanılan enine donatı (etriye) çapının ve aralıklarının farklı olmasından kaynaklanmaktadır. Tablo 49'de belirtilen değerlerden de anlaşılacağı üzere (C1-C7) numaralı kolon kesitlerinde boyuna donatı miktarı (8Φ20), enine donatı çapı (Φ8) olarak sabit tutulup enine donatı aralıkları (50mm-200mm) arasında değiştirilirken (C8-C14) numaralı kolon kesitlerinde ise boyuna donatı miktarı (12Φ20), enine donatı çapı (Φ10) olarak sabit tutulmuş ve enine donatı aralıkları yine aynı şekilde (50mm-200mm) arasında değiştirilmiştir.

Grafiklerden elde edilen verilere göre aşağıdaki iki önemli sonuca ulaşılmıştır:

- a) Kolon kesitlerindeki enine donatı çapı sabit iken enine donatı aralığı arttırıldıkça moment kapasitesinin giderek düştüğü görülmüştür. Ancak bu değişimin %5 ila %10 arasında ihmal edilebilir bir düzeyde olduğu söylenebilir. Bu yüzden yapısal analizlerde TBDY 2018'de uygulanılmasının önerildiği gibi enine donatı aralığının moment kapasitesine etkisi ihmal edilebilecek düzeyde olduğu için bu aralık dikkate alınmadan analiz yapılması mümkündür.
- b) Enine donatı aralığının süneklik üzerindeki etkisine bakıldığında durumun farklı olduğu tespit edilmiştir. Enine donatı aralığı sıklaştırıldıkça süneklik kapasitesinde 3 ile 5 kat arasında değişen önemli artışlar görülmüştür. Bu nedenle yapıların performansa dayalı tasarımları yapılırken doğrusal olmayan yöntemlerin kullanılması daha uygun olacaktır.

Sonuç olarak; her ne kadar enine donatı aralığının moment kapasitesindeki artışları ihmal edilebilecek düzeyde olsa da bu aralığın süneklik üzerindeki etkisi incelendiğinde tasarım yapılırken dikkate alınması işlevsellik ve ekonomiklik bakımından son derece önemlidir. Bir betonarme kolon kesit tasarımında enine donatı çapının seçiminden daha önemli olarak enine donatı aralığı sıklaştırılmasının süneklik artışı için gerekli olduğu söylenebilir.

BEŞİNCİ BÖLÜM SONUÇ VE ÖNERİLER

Kesit ve malzeme özellikleri bilinen belirli bir betonarme kolon kesitin $M - \kappa$ ilişkisinin bulunması için el ile hesaplama yapılması mümkündür. Ancak bu çekme donatısının akma anına ve en büyük beton basınç birim şekil değiştirmesine karşılık gelecek şekilde kabaca ifade edilmesi, kuvvet dengesinin kurulması için gereken tarafsız eksen derinliğinin saptanmasını sağlayacak birçok deneme-yanılma işleminden dolayı çok vakit alıcı bir yol olmaktadır. Bu nedenle, önceden bahsedilen $M - \kappa$ ilişkisinin bilgisayar program yardımı ile hatasız ve istenilen hassasiyette elde edilmesi en etkin yoldur. Bu tez kapsamında üçüncü bölümde açıklandığı üzere bir program yazılarak kolon kesitleri incelenmiştir. İncelenen kolonların özellikleri parametrik olarak seçilmiştir. Boyuna donatı oranı ve enine donatı oranının etkisini araştırmak için (500mm×500mm) ve (500mmx500mm) boyutlarında farklı enine ve boyuna donatı miktarına sahip 14 adet betonarme kolon davranışı incelenmiştir. TBDY-2018 yönetmeliğine uygun olacak şekilde tüm kolon modelleri için beton sınıfı C30 ve donatı sınıfı S420 olarak seçilmiştir. Tablo 12 ve Tablo 26'de seçilen malzemelere ait çalışmada kullanılan karakteristik değerler verilmiştir. Tablo 14, 16, 18, 20, 24, 26, 30, 32, 34, 36, 38 ve 40'ta gösterilen farklı boyuna donatı miktarı (8 Φ 20 ve 12 Φ 20), farklı enine donatı çapları (Φ 8 ve Φ 10) ve farklı etriye aralıkları (50mm, 75mm, 100mm, 125mm, 150mm, 175mm ve 200mm) seçilmiştir. Kolonlar için sekiz farklı normal kuvvet değeri N1-N8 (0 kN, 2200kN, 2000kN, 1800kN, 1600kN, 1400kN,1200kN ve 1000kN) ve N9-N16 (0 kN, 2200kN, 2000kN, 1800kN, 1600kN, 1400kN,1200kN ve 1000kN) için bulunan eğriler detaylı olarak incelenmiştir.

5.1. Sonuçlar

Yukarıdaki irdelemeler ışığında aşağıdaki sonuçlara ulaşılmıştır:

 Karşılaştırma kriteri olarak boyuna donatı ve enine donatı oranları seçilmesi durumunda betonarme kolon eksenel kuvveti 1600 kN'da sabit tutulmuştur. Bu şekilde kolon kesitindeki eksenel yük seviyesi sabit durumu için enine donatı aralıkları değiştirerek ilk akma eğrilik değerleri incelenmiştir. Analizlerden elde edilen sonuca göre karşılaştırılan üç model için de eksenel kuvvet sıfır durumunda ilk akma eğrilik değerlerinin birbirine çok yakın olduğu görülmektedir. Eksenel kuvvet değerleri arttırılğında ise ilk akma moment kapasitelerinin Mander ve Saatcioğlu modelleri kapsamında çok yakın oldukları belirlenmiştir. Köksal ve Erdoğan modelinde kuşatma basıncı hesabındaki farklı yaklaşım bu düşüklüğün başlıca nedeni olarak görülebilir. Bu bağlamda her üç modelden elde edilen maksimum moment kapasitelerinde ise Köksal ve Mander modelleri birbirlerine çok yakın sonuçlar verirken bu kez Saacioglu modeli daha düşük sonuçlar vermektedir. Son kapasite değerlerinde çelik davranışı oldukça önemlidir. Dolayısyla bulunan sonuçlar seçilen çelik davranış modeline bağlı olarak değişebilirler. Söz konusu kolonlardaki enine donatı aralığı arttırıldığında moment kapasitesinin de azaldığı gözlemlenen bir diğer husustur.

- 2. Kolon kesitlerine uygulanan eksenel yük seviyesi değiştirilerek, bu durumun moment-eğrilik ilişkisine etkisinin iki farklı yazılım tarafından incelenmesi neticesinde SEMAp programından daha yüksek moment değerleri elde edildiği görülmüştür. %2 ila %5 arasında değişen bu farklılıkların bulunması beklenen bir durumdur. METP yazılımında kabuk betonun dikkate alınmaması bu durumun nedenidir. METP yazılımında eğrilik kapasitesinin daha fazla olduğu görülmektedir. Bunun nedeni ise yazılımların özellikle çelik davranışı için farklı sonlanma seçenekleri kullanmaları olabilir. Analiz sonuçları değerlendirildiğinde her iki programından elde edilen kolon kesitindeki ilk akma moment-eğrilik, maksimum moment-eğrilik kapasitesinin birbirlerine çok yakın oldukları söylenebilir.
- 3. Analiz sonuçlarına göre boyuna donatı oranındaki artışın, kesit elemanlarının akma ve maksimum moment kapasitelerini etkilediği sonucu varılmıştır. Buna ek olarak enine donatı çapının da moment kapasitesine etkisi irdelenebilir. Enine donatı çapındaki değişimin maksimum moment kapasitesini ortalama %5 civarında arttırdığını söylenilebilir. Ayrıca bu değişimin kesitin sünekliğine olan etkisinin ise %25 ila %30 mertebelerinde olduğu belirlenmiştir.

- 4. Bir diğer sonuç olarak grafiklerden elde edilen verilere göre kolon kesitindeki enine donatı çapı sabit iken enine donatı aralığı arttıkça moment kapasitesinin azaldığı gözlemlenmiştir. Her ne kadar enine donatı aralığının moment kapasitesindeki artışları ihmal edilebilecek düzeyde olsa da bu aralığın süneklik üzerindeki etkisi incelendiğinde tasarım yapılırken dikkate alınması işlevsellik açısından son derece önemlidir.
- 5. Mander beton modelinde kuşatma gerilmeleri ve etkisi hesaplanırken sadece yanal donatı miktarı, donatının akma dayanımı, donatı konfigürasyon ve kesit geometrisi dikkate alınmakta ve bunun sonucunda kuşatılmış beton dayanımı değeri hesaplanmaktadır. Bu nedenle kolonun beton basınç dayanımının artması kolon sünekliğinde de benzer bir artışa neden olmaktadır. Kolondaki boyuna donatı oranı, etriye çapı, etriye sıklığının eksenel kuvvet düzeyinde ve kolon sünekliğinde önemli bir etkisi olduğunu elde edilen eğrilerden gözlenmektedir.
- 6. Analizlerde etriye aralığının sıklaştırılması, eksenel kuvvet ve eğilme momenti taşıma gücünü ortalama olarak %5 gibi az bir oranda etkilediği görülmüştür. Bu nedenle taşıma gücüne dayanan tasarımda farklı etriye aralıklarına sahip kolonların aynı eksenel kuvvet taşıma gücüne sahip olmaları kabul edilebilir bir varsayımdır. Ancak aynı kolonların şekildeğiştirme kapasiteleri ve sünek davranışları söz konusu olduğunda analizlerden de görüleceği üzere 5 kata varan artışlar tespit edilmiştir. Performansa dayalı veya bir başka ifadeyle şekildeğiştirmeleri temel alan çözümlemelerde etriye aralıklarının ya da kuşatma basıncı etkisinin tasarıma gerçekçi bir şekilde yansıtılması önemlidir. Bu ise kuşatılmış beton davranışını gerçeğe yakın bir şekilde yansıtan beton modellerinin kullanılması ile mümkün olmaktadır.

İleriki çalışmalar için özellikle artan süneklik kapasitenin gerçekçi bir modelle tasarıma dahil edilmesi gerekmektedir. Bu yönde yapılacak çalışmalar performansa dayalı analizlerin de gelişmesi sağlayabilir.

KAYNAKÇA

- TBDY-2018, Türkiye Bina Deprem Yönetmeliği, *Afet ve Acil Durum Yönetimi Başkanlığı, Ankara*, Türkiye., Mart 2018.
- Mander, J.B., Priestly, M.J.N. ve Park, R., (1988), "Observed Stress-Strain Behavior of Confined Concrete", *Journal of the Structural Engineering, ASCE*, 114(8):1827-1849.
- Mnader, J.B., Priestly, M.J.N. ve Park, R., (1988), "Theoretical Stress-Strain Model for Confined Concrete", *Journal of the Structural Engineering, ASCE*, 114(8):1804-1826.
- Saatcioglu, M. ve Razvi, S.R., (1992), "Strength and Ductility of Confined Concrete" Journal of Structural Engineering, ASCE, 118(6):1590-1607.
- Saatcioglu, M., & Razvi, S. R. (1991). Analytical model for confined concrete. Res. Rep, 9101.
- ERSOY, U., ÖZCEBE, G., Sarılmış Betonarme Kesitlerde Moment-Eğrilik İlişkisi Analitik Bir İrdeleme. *İMO Teknik Dergi*, pp. 1799-1827, 1998.
- TS 500, (2000), "Betonarme Yapıların Tasarım ve Yapım Kuralları", *Türk Standartları Enstitüsü*, Ankara.
- ERSOY, U., ÖZCEBE, G., (2001), Betonarme, Evrim Yayınevi, İstanbul.
- Park, R., Priestley, M. N., & Gill, W. D. (1982). Ductility of square-confined concrete columns. *Journal of the structural division*, 108(4), 929-950.
- Kent, D.C. ve Park, R., (1971), "Flexural Members with Confined Concrete", *Journal of the Structural Division, Proc. of the american Society of Civil Engineers*, 97(ST7):1969-1990.
- Hognestad , E., (1951), "A Study of Combined Bending and Axial Load in Reinforced Concrete Members", Bulletin Series No.399, University of Illinois Eng. Exp. Station, Urbana.
- DOĞANGÜN, A., Betonarme Yapıların Hesap ve Tasarımı. 3 dü. İstanbul: Birsen Yayınevi 2007.

- Koksal, H. O., & Erdogan, A. (2021, August). Stress–strain model for high-strength concrete tied columns under concentric compression. *In Structures* (Vol. 32, pp. 216-227). Elsevier.
- Park, R., & Paulay, T. (1975). Ductile reinforced concrete frames: Some comments on the special provisins for seismic design of ACI 318-71 and on capacity design. *Bulletin* of the New Zealand Society for Earthquake Enginnering, 8(1), 70-90.
- Roy, H. (1964, November). EH, and Sozen, MA. In Ductility of Concrete, Proceedings of the International Symposium on the Flexural Mechanics of Reinforced Concrete, ASCE and American Concrete Institute, Miami, Fla (pp. 213-224).
- Park, R., & Paulay, T. (1975). Reinforced Concrete Structures, John Wiley & Sons. NY, USA.
- Sheikh, S. A., & Uzumeri, S. M. (1980). Strength and ductility of tied concrete columns. *Journal of the structural division*, 106(5), 1079-1102.
- Sheikh, S. A., & Uzumeri, S. M. (1982). Analytical model for concrete confinement in tied columns. *Journal of the structural division*, 108(12), 2703-2722.
- Ersoy, U., & Özcebe, G. (2012). Betonarme 1, İSBN: 978-975-503-215-31, Evrim Yayınevi ve Bilgisayar San. Tic. Ltd. Şti, İstanbul.
- Popovics, S. (1973). A numerical approach to the complete stress-strain curve of concrete. *Cement and concrete research*, 3(5), 583-599.
- Richart, F. E., Brandtzæg, A., & Brown, R. L. (1928). A study of the failure of concrete under combined compressive stresses. University of Illinois at Urbana Champaign, College of Engineering. Engineering Experiment Station.
- William, K. J., & Warnke, E. P. (1975). Constitutive model for the triaxial behavior of concrete international association for bridge and structure engineering proceedings.
- İnel M., Özmen H.B. ve Bilgin H., "Sargı Etkisi Modelleme Analiz Programı" (SEMAp) Kullanım klavuzu, Denizli, (2008).
- SEMAp Program, http://d.pau.edu.tr/q5DEf
- Silverfrost Fortran FTN95, https://www.silverfrost.com/16/ftn95/plato.aspx

EKLER

EK 1

MANDER KUŞATILMIŞ BETON MODELİ

import ! MANDER KUŞATILMIŞ BETON MODELİ

! ns:kare kolonun bir yönündeki etriye kolu sayısı ! ni:düşey donatı aralığı sayısı ! nd:dilim sayısı c/ts değeri tamsayıya yuvarlanır

INTEGER nd, ni, ns

!b ve h kolon kesit boyutları !ASA,ASO ve ASU;: alt, orta ve üst sıra boyuna donatı alanları !du:kolon dış yüzünden boyuna donatı ağırlık merkezi olan !uzaklık; d:etkili derinlik=h-du; hc ve bc:C etriye ağırlık !merkezinden geçen çekirdek beton kesit boyutları !ts:dilim kalınlığı; c:tarafsız eksen derinliği; !wi:boyuna donatılar arası serbest açıklık !s:düşey doğrultudaki etriye aralığı !fyw ve fywe: boyuna ve enine donatıların akma dayanımları !ecc:kuşatılmış beton dayanımına karşılık gelen birim kısalma !ecu:kuşatılmış betondaki en büyük birim kısalma !E0: betonun başlangıç elastisite modülü !ES: çeliğin elastisite modülü !sc(i):herbir beton dilimine karşılık gelen gerilme değeri !fc: kuşatılmamış betonun tek eksenli basınç dayanımı !fcc:kuşatılmış betonun çok eksenli basınç dayanımı !fl:etkili kuşatma basıncı !ke: kuşatma basıncı etkinlik katsayısı !numda,numdo,numdu:alt, orta ve üst düşey donatı sayısı !fi: boyuna donatı çapı !fie: enine donatı çapı !ec():dilimlere karşılık gelen birim şekildeğiştirmeler !gx:etriye donat1 oran1 !wh:kesit ağırlık merkezini tanımlayan h/2 değeri

```
!dd:beton örtüsü + etriye çapı =du+fie
!dc=kolon kesit yüksekliği - dd
!su: etriyeler arası düşey serbest açıklık
!esu,eso,esa: üst, orta ve alt donatılardaki birim
!şekildeğiştirmeler
```

REAL b,h,du,ASA,ASU,ASO,d,hc,bc,ts,c,wi,s,fyw,fywe,ecc REAL ecu,E0,ES,sc(1000),fc,fcc,fl,ke,fi,fie REAL SUMC,ec(1000),gx,wh,dd,dc,su,eso,esu,esa,numd

!mcmander dosyasına tüm sonuçla veriler yazılmaktadır

```
OPEN (5,FILE='mcmander.txt')
b=500.
h=500.
du=25.
numd=4.
numd=4.
numd=4.
fi=20.
ASA=numda*22/7.*fi*fi/4.
ASO=numdo*22/7.*fi*fi/4.
ASU=numdu*22/7.*fi*fi/4.
fie=10.
bc=b-2.0*du-fie
hc=h-2.0*du-fie
dd=du+fie
d=h-dd-fi/2.
dc=h-dd
ts=1.
fc=30.
ns=4.
ni=3.
fi=20.
s=200.
su=s-fie
f_{VW}=420.
```

```
fywe=420.
      qx=(22/7*fie*fie*ns/4)/(s*bc)
      wi=(hc-fi*ns-fie)/ni
      ke=(1.-((wi*wi*ni*4)/6/bc/hc))*(1-su/2/bc)*(1-su/2/hc)
      ke=ke/(1-(ASU+ASO+ASA)/bc/hc)
      fl=ke*qx*fyw
      fcc=fc*((2.254*SQRT(1+(7.94*fl/fc)))-(2*fl/fc)-1.254)
      E0=5000*SQRT(fc)
      ecc=0.002*(1+5.*((fcc/fc)-1.))
      ES=fcc/ecc
      ecu=0.001
      wh=hc/2.
   50 c=1.
  100 nd=c/ts
      SUMC=0.0
      vMOMC=0.0
      DO i=1, nd
        ec(i) =ecu*i/nd
        x=ec(i)/ecc
       r=E0/(E0-ES)
      sc(i) = fcc*x*r/(r-1+x*r)
      whk=c-hc
      tis=i*ts
      wit=c-tis
      wch=abs(c-wh)
      wmes=tis+wch
      IF ((whk.GT.0.).AND.(wit.GT.hc)) SUMC=SUMC+0.
      IF ((whk.GT.0.).AND.(wit.LE.hc))SUMC=SUMC+sc(i)*bc*ts
      IF (whk.LE.0.)SUMC=SUMC+sc(i)*bc*ts
      IF ((c.GT.wh).AND.(C.LE.hc))
yMOMC=yMOMC+sc(i) *ts*bc*(tis-wch)
      IF (c.LE.wh) yMOMC=yMOMC+sc(i) *ts*bc*(wh-wit)
      IF ((whk.GT.0.).AND.(wit.GT.hc)) yMOMC=yMOMC+0.
        wits=wit+hc/2.
        wd=c-tis-hc/2.
      IF ((whk.GT.0.).AND.(wit.LE.hc).AND.(tis.LE.wits))
yMOMC=yMOMC-sc(i) *ts*bc*wd
```

```
III
```

```
IF ((whk.GT.0.).AND.(wit.LE.hc).AND.(tis.GT.wits))
yMOMC=yMOMC+sc(i) *ts*bc*wd
      ENDDO
        yMOMCC=yMOMC
      esu=ecu
      fssu=esu*200000.
      IF(fssu.GT.fyw) fssu=fyw
        FSU=ASU*fssu
      eso=esu/c*abs(wh-c)
      fsso=abs(eso*200000.)
      IF(fsso.GT.fyw) fsso=fyw
            IF(c.lt.wh) FSO=-1.*ASO*fsso
      IF(c.ge.wh) FSO=ASO*fsso
      esa=esu/c*(hc-c)
      fssa=abs(esa*200000.)
       IF(fssa.GT.fyw) fssa=fyw
       IF(c.lt.hc) FSA=-1.*ASA*fssa
       IF(c.ge.hc) FSA=ASA*fssa
       SUMC=SUMC+FSU+FSO+FSA
       IF(whk.LE.0.) yMOMC=yMOMC+ABS(FSU*wh)+ABS(FSA*wh)
      CN=15000.
      Fark=ABS(SUMC-1000000.)
        IF (Fark.GE.CN)C=C+1.
       IF (Fark.GE.CN)go to 100
        eg=ecu/c*1000.
        SUMC=SUMC/1000.
        yMOMC=yMOMC/100000.
      WRITE (5, *) eq, yMOMC
      yMOMCC=yMOMCC/100000.
        print *,FSU,FSO,FSA,SUMCC
        print *,eq,yMOMC,yMOMCC,SUMC,ecu,c
      ecu=ecu+0.00004.
      IF (ecu.LT.0.08) go to 50
  45 CLOSE (5)
```

```
END
```

ÖZGEÇMİŞ

KİŞİSEL BİLGİLER

İsim SOYİSİM	:
Doğum Yeri	:
Doğum Tarihi	:

EĞİTİM DURUMU

Lisans Öğrenimi	:		
Yüksek Lisans Öğrenimi	:		
Bildiği Yabancı Diller	:		

BİLİMSEL FAALİYETLERİ

b) Bildiriler

c) Katıldığı Projeler

iletişim

E-posta Adresi : ORCID :