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ANew Approach toMannheim Curve in Euclidean 3-Space

Ali Uçum, Çetin Camcı and Kazım İlarslan

Abstract. In this article, a new approach is given for Mannheim curves in 3-dimensional
Euclidean space. Thanks to this approach, the necessary and sufficient conditions including
the known results have been obtained for a curve to be Mannheim curve in E3. In addition,
related examples and graphs are given by showing that Salkowski and anti-Salkowski curves
can be the examples of Mannheim curves and their mates. Finally, the Mannheim partner
curves are characterized in E3.

1 Introduction

In the Euclidean 3-spaceE3, a curve is called a general helix if its tangent vector makes a constant
angle with a fixed straight line (the axis of the general helix). According to well-known result
stated by M. A. Lancret in 1802 and first proved by B. de Saint Venant in 1845 (for details see
[4, 5] ) a regular curve is a general helix if and only if the ratio of curvature to torsion is constant.
Also it is known that a curve is called a circular helix if both curvatures k1 and k2 are non-zero
constant. Circular helices geometrically appear as geodesic in right cylinders shaped on circle. The
geodesics of a right cylinder, with arbitrary cross section, are called general or Lancret helices. In
addition, Izumiya and Takeuchi have introduced the concept of slant helix having a property that
the normal lines make a constant angle with a fixed straight line. They characterize a slant helix
by the necessary and the suffcient condition that the geodesic curvature

κg =

(
κ2
κ1

)′ κ21(
κ21 + κ22

)3/2
of spherical image of its principal normal indicatrix is a constant function [3]. A family of curves
with constant curvature but non-constant torsion is called Salkowski curves and a family of curves
with constant torsion but non-constant curvature is called anti-Salkowski curves ([1], [9]). In [8],
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Monterde studied some of characterizations of these curves and he proved that their principal nor-
mal vector makes a constant angle with fixed straight line. So that Salkowski and anti-Salkowski
curves are important examples of slant helices.

On the other hand, there exist some kinds of associated curves whose the Frenet frame fields
satisfy certain geometric conditions in the Euclidean space E3. An example of such curves are
calledMannheim curves, which have a property that their principal normal lines coincidewith the
binormal lines of theMannheimmate (partner) curve at the corresponding points of the curves. It
is known that the curvature functions of Mannheim curve in E3 satisfy the equality κ1 = a(κ21+

κ22) for some positive constant number a and its parametric equation is obtained in [6] (see also
[7],[11]). Some characterizations of Mannheim curves in E3 can be found in [4] and [6].

Let β be aMannheim curve andβ∗ be theMannheimpartner curve ofβ in Euclidean 3-space
E3. In the literature, β∗ is given by

β∗(f(s)) = β(s) + λ (s)N(s) (1.1)

where N(s) is the principal normal vector field of β and f is a differentiable function [4]. With
respect to (1.1), the vector

−−→
β∗β must be parallel toN .

In this paper, following [2], we claim that the vector
−−→
β∗β does not have to be parallel to

N, which is a special case for choosing the Mannheim partner curve. So we consider that the
Mannheim partner curve of β∗ is given by

β∗(f(s)) = β(s) + u(s)T (s) + v (s)N(s) + w (s)B (s) (1.2)

where {T (s) , N (s) , B (s)} is Frenet frame of β. Here if we take u = w = 0, we obtain the
case is used in the literature. So we give the generalization of Mannheim curves in E3. In this
paper, we obtain the necessary and sufficient conditions for a curve in E3 to be Mannheim curve
and give the related examples with respect to this new approach to Mannheim curves. Finally, we
characterize the Mannheim partner curves in E3.

2 New approach toMannheim curves in Euclidean 3-spaceE3

In this section, we will reconsider the Mannheim curves in Euclidean 3-space E3. Also in this
paper, we will consider the case where κ2 ̸= 0 so that the curve can lie fully in E3.

Definition 1. A curve β : I → E3 with non-zero curvatures is a Mannheim curve if there is a
curve β∗ : I∗ → E3 such that the principal normal vectors of β(s) coincide with the binormal
vectors of β∗(s∗) at s ∈ I , s∗ ∈ I∗. In this case, β∗(s∗) is called the Mannheim partner curve of
β(s).
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Let β : I → E3 be a Mannheim curve in E3 with the Frenet frame {T,N,B} and the non-
zero curvatures κ1, κ2, and β∗ : I∗ → E3 be a Mannheim partner curve of β with the Frenet
frame {T ∗, N∗, B∗} and the non-zero curvatures κ∗1, κ∗2. Then β∗ can be written as

β∗(s∗) = β∗(f(s)) = β(s) + u(s)T (s) + v (s)N(s) + w (s)B (s)

where u(s), v (s) and w (s) are differentiable functions on I .

Theorem2.1. Let β : I ⊂ R → E3 be a unit speed curve with the non-zero curvatures κ1, κ2. Then
the curve β is a Mannheim curve with Mannheim partner β∗ if and only if there exist differentiable
functions u, v, w satisfying

uκ1 + v′ = wκ2, w′ + vκ2 ̸= 0,
(
1 + u′ − vκ1

)
κ1 =

(
w′ + vκ2

)
κ2. (2.1)

Proof. Assume that β is a Mannheim curve parametrized by arc-length s with non-zero curva-
tures κ1, κ2 and the curve β∗ is theMannheim partner curve of the curve β parametrized by with
arc-length or pseudo arc s∗. Then, we can write the curve β∗ as

β∗(s∗) = β∗(f(s)) = β(s) + u(s)T (s) + v (s)N(s) + w (s)B (s) (2.2)

for all s ∈ I where u(s), v (s) and w (s) are differentiable functions on I . Differentiating (2.2)
with respect to s, we get

T ∗f ′ =
(
1 + u′ − vκ1

)
T +

(
uκ1 + v′ − wκ2

)
N +

(
w′ + vκ2

)
B. (2.3)

By taking the scalar product of (2.3) withN , we have

uκ1 + v′ − wκ2 = 0. (2.4)

Substituting (2.4) in (2.3), we find

T ∗f ′ =
(
1 + u′ − vκ1

)
T +

(
w′ + vκ2

)
B. (2.5)

By taking the scalar product of (2.5) with itself, we obtain(
f ′)2 = (1 + u′ − vκ1)

2 +
(
w′ + vκ2

)2 . (2.6)

If we denote
δ =

1 + u′ − vκ1
f ′ and γ =

w′ + vκ2
f ′ , (2.7)

we get
T ∗ = δT + γB. (2.8)
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Differentiating (2.8) with respect to s, we find

f ′κ∗1N
∗ = δ′T + (δκ1 − γκ2)N + γ′B. (2.9)

By taking the scalar product of (2.9) withN , we get δκ1 − γκ2 = 0, which implies that(
1 + u′ − vκ1

)
κ1 =

(
w′ + vκ2

)
κ2 (2.10)

where w′ + vκ2 ̸= 0.

Conversely, assume that β is a curve parametrized by arc-length s with non-zero curvatures
κ1, κ2 and the conditions of (2.1) hold for differentiable functions u, v, w. Then, we can define a
curve β∗ as

β∗(s∗) = β(s) + u(s)T (s) + v (s)N(s) + w (s)B (s) . (2.11)

Differentiating (2.11) with respect to s, we find

dβ∗

ds
=
(
1 + u′ − vκ1

)
T +

(
w′ + vκ2

)
B. (2.12)

which leads to that

f ′ =

√〈
dβ∗

ds
,
dβ∗

ds

〉
=

m1 (w
′ + vκ2)

√
κ21 + κ22

κ1
, (2.13)

wherem1 = sgn (w′ + vκ2). Rewriting (2.12) , we obtain

T ∗ =
m1√
κ21 + κ22

(κ2T + κ1B) , g (T ∗, T ∗) = 1. (2.14)

If we put
λ1 =

m1κ2√
κ21 + κ22

and λ2 =
m1κ1√
κ21 + κ22

,

we get
T ∗ = λ1T + λ2B. (2.15)

Differentiating (2.15) with respect to s, we find

dT ∗

ds∗
=

λ′
1

f ′ T +
λ′
2

f ′ B

which cause that

κ∗1 =

∥∥∥∥dT ∗

ds∗

∥∥∥∥ =

√
(λ′

1)
2 + (λ′

2)
2

f ′ =
m2 (κ2κ

′
1 − κ1κ

′
2)

f ′
(
κ21 + κ22

) =
−m2κ

2
1

(
κ2
κ1

)′
f ′
(
κ21 + κ22

) , (2.16)
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wherem2 = sgn (κ2κ
′
1 − κ1κ

′
2). Now, we can findN∗ as

N∗ =
m1m2√
κ21 + κ22

(−κ1T + κ2B) , g (N∗, N∗) = 1. (2.17)

Now, we defineB∗ as

B∗ = T ∗ ×N∗ = −m2N , g (B∗, B∗) = 1.

Lastly we find

κ∗2 = −
〈
dB∗

ds∗
, N∗

〉
=

m1

√
κ21 + κ22
f ′ ̸= 0. (2.18)

Then β∗ is a Mannheim partner curve of β. Thus β is a Mannheim curve.

If we take u = w = 0 inTheorem 2.1, we get the conditions of classical Mannheim curves in
the literature with the Mannheim partner curve β∗ given by

β∗(s) = β(s) + v (s)N(s).

Corollary 2.2. Let β : I ⊂ R → E3 be a unit speed curve with the non-zero curvatures κ1, κ2.
Then the curve β is a Mannheim curve with Mannheim partner β∗ given by

β∗(s) = β(s) + v (s)N(s)

if and only if there exist real number v satisfying κ1 = v
(
κ21 + κ22

)
.

Corollary 2.3. Let β : I ⊂ R → E3 be a general helix with the non-zero curvatures κ1, κ2. Then
β does not have the Mannheim partner curve liying fully in E3 (or the Mannheim partner curve is
a straight line).

Proof. Assume that β : I ⊂ R → E3 is a Mannheim general helix with the non-zero curvatures
κ1, κ2. Then the ratio κ2/κ1 is constant which implies from (2.16) that κ∗1 = 0. Then β∗ is a
straight line.

Corollary 2.4. Let β : I ⊂ R → E3 be a Mannheim curve with the curvatures κ1, κ2 and the
curve β∗ be a Mannheim partner curve of β with the curvatures κ∗1, κ∗2. Then β∗ is a general helix
if and only if β is a slant helix.

Proof. Assume that β : I ⊂ R → E3 is a Mannheim curve with the curvatures κ1, κ2 and the
curve β∗ is a Mannheim partner curve of β.Then from (2.16) and (2.18), we have

κ∗1
κ∗2

= −m1m2

(
κ2
κ1

)′ κ21(
κ21 + κ22

)3/2 .
So β∗ is a general helix if and only if β is a slant helix.
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In the following example, we give a Mannheim partner curve of a Mannheim curve in E3.

Example 1. Let β : I ⊂ R → E3 be a Mannheim curve with the curvatures κ1, κ2. Then the
conditions of Theorem 2.1 are satisfied. Assume that v = v0 ∈ R. Then we can find

uκ1 = wκ2 and
(
1 + u′ − v0κ1

)
κ1 =

(
w′ + v0κ2

)
κ2,

which implies that

w =
v0
(
κ21 + κ22

)
− κ1

κ1

(
κ2
κ1

)′ and u =
κ2
(
v0
(
κ21 + κ22

)
− κ1

)
κ21

(
κ2
κ1

)′ .

Thus we obtain the Mannheim partner curve β∗ as

β∗ = β +
κ2
(
v0
(
κ21 + κ22

)
− κ1

)
κ21

(
κ2
κ1

)′ T + v0N +
v0
(
κ21 + κ22

)
− κ1

κ1

(
κ2
κ1

)′ B.

In the following example, we give an example for a Salkowski curve which is Mannheim curve.
This example is new in the literature.

Example 2. Let us consider the Salkowski curve in E3 given by

β (s) =


78s

√
25−s2 cos(

√
26 arcsin( s

5))+
√
26(28s2−625) sin(

√
26 arcsin( s

5))
2860 ,

√
26(625−28s2) cos(

√
26 arcsin( s

5))+78s
√
25−s2 sin(

√
26 arcsin( s

5))
2860 ,

25−2s2

4
√
26


with the curvatures κ1 = 1 and κ2 = s/

√
25− s2 and the Frenet frame as

T =


−
√
25−s2 cos(

√
26 arcsin( s

5))
5 − s sin(

√
26 arcsin( s

5))
5
√
26

,

s cos(
√
26 arcsin( s

5))
5
√
26

−
√
25−s2 sin(

√
26 arcsin( s

5))
5 ,

− 2√
26

 ,

N =

(
5 sin

(√
26 arcsin

(
s
5

))
√
26

,−
5 cos

(√
26 arcsin

(
s
5

))
√
26

,− 1√
26

)
,

B =


s cos(

√
26 arcsin( s

5))
5 −

√
25−s2 sin(

√
26 arcsin( s

5))
5
√
26

,
√
25−s2 cos(

√
26 arcsin( s

5))
5
√
26

+
s sin(

√
26 arcsin( s

5))
5 ,

−
√
25−s2√
26

 .

If we take v0 = 0 in Example 1, we obtain the Mannheim partner curve β∗ as follows

β∗ (s) =


3(26s

√
25−s2 cos(

√
26 arcsin( s

5))+
√
26(2s2−25) sin(

√
26 arcsin( s

5)))
2860 ,

3
√
26(25−2s2) cos(

√
26 arcsin( s

5))+78s
√
25−s2 sin(

√
26 arcsin( s

5))
2860 ,

125−6s2

4
√
26

 ,
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with the curvatures
κ∗1 =

5

3s
√
25− s2

and κ∗2 =
25

3s
√
25− s2

the Frenet frame as

T ∗ =

(
−
sin
(√

26 arcsin
(
s
5

))
√
26

,
cos
(√

26 arcsin
(
s
5

))
√
26

,− 5√
26

)
,

N∗ =
(
− cos

(√
26 arcsin

(s
5

))
,− sin

(√
26 arcsin

(s
5

))
, 0
)
,

B∗ =

(
5 sin

(√
26 arcsin

(
s
5

))
√
26

,−
5 cos

(√
26 arcsin

(
s
5

))
√
26

,− 1√
26

)
.

It can be easily obtained N = B∗ which implies that β is a Mannheim curve whose Mannheim
partner curve is β∗. Here β∗ is a general helix.
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Figure 1: The figure contains same graphics from two different aspects. The red graphic is β and
the black graphic is β∗ in Example 2. (For interpretation of the references to color in this figure legend,
the reader is referred to the free web version of this article.)

In the following example, we give an example for an anti-Salkowski curvewhich isMannheim
curve. This example is new in the literature.

Example 3. Let us consider the anti-Salkowski curve in E3 given by

β (s) =


(24−s2)

3/2
(−144−9s2+5s4)
37800 ,

s(7560+1260s2−189s4+5s6)
37800 ,

−6
5

(
−2 arcsin

(√
24−s2

2
√
6

)
+ sin

(
2 arcsin

(√
24−s2

2
√
6

)))


with the curvatures κ1 = s√
24−s2

and κ2 = 1 and the Frenet frame as

T =

(
−s3

√
24− s2

(
s2 − 15

)
1080

,
216 + 108s2 − 27s4 + s6

1080
,
−
√
24− s2

5

)
,
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N =

(
s− s3

6
+

s5

180
,

√
24− s2

(
36− 18s2 + s4

)
180

,
1

5

)
,

B =

(
1−

s2
(
540− 45s2 + s4

)
1080

,
s
(
24− s2

)3/2 (
s2 − 9

)
1080

,−s

5

)
.

If we take v0 = 0 in Example 1, we obtain the Mannheim partner curve β∗ as follows

β∗ (s) =


√
24−s2(−4608+2004s2−178s4+5s6)

50400 ,
s(20160−3780s2+238s4−5s6)

50400 ,

− 3
10

(
s
√
24− s2 − 8cosec−1

(
2
√
6√

24−s2

))
 ,

with the curvatures

κ∗1 =
2
√
6

3 (16− s2)
and κ∗2 =

8

16− s2

the Frenet frame as

T ∗ =

(
s
(
180− 30s2 + s4

)
360

√
6

,

√
24− s2

(
36− 18s2 + s4

)
360

√
6

,−2
√
6

5

)
,

N∗ =

(√
24− s2

(
36− 18s2 + s4

)
72
√
6

,−
s
(
180− 30s2 + s4

)
72
√
6

, 0

)
,

B∗ =

(
−s+

s3

6
− s5

180
,−

√
24− s2

(
36− 18s2 + s4

)
180

,−1

5

)
.

It can be easily obtainedN = −B∗ which implies that β is a Mannheim curve whose Mannheim
partner curve is β∗. Here β∗ is a general helix.

Example 4. Let us consider the curve in E3 given by

β (s) =


−3√
2
cos
(√

2s
)
sin s+ 2 cos s sin

(√
2s
)
,

−3√
2
sin
(√

2s
)
sin s− 2 cos s cos

(√
2s
)
,

1√
2
sin s


with the curvatures κ1 = sin s and κ2 = cos s and the Frenet frame as

T =


1√
2
cos
(√

2s
)
cos s+ sin

(√
2s
)
sin s,

1√
2
sin
(√

2s
)
cos s− cos

(√
2s
)
sin s,

1√
2
cos (s)

 ,

N =

(
cos
(√

2s
)

√
2

,
sin
(√

2s
)

√
2

,− 1√
2

)
,
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Figure 2: The figure contains same graphics from two different aspects. The red graphic is β and
the black graphic is β∗ in Example 3. (For interpretation of the references to color in this figure legend,
the reader is referred to the free web version of this article.)

B =


1√
2
cos
(√

2s
)
sin (s)− cos (s) sin

(√
2s
)
,

1√
2
sin
(√

2s
)
sin (s) + cos (s) cos

(√
2s
)
,

1√
2
sin (s)

 .

It can be easily obtained that

σ =

(
κ2
κ1

)′ κ21(
κ21 + κ22

)3/2 = 1.

So β is a slant helix. If we take v0 = 0 in Example 1, we obtain the Mannheim partner curve β∗

as follows

β∗ (s) =

 −
√
2 cos

(√
2s
)
sin s+ 2 sin

(√
2s
)
cos s,

−2 cos
(√

2s
)
cos s−

√
2 sin

(√
2s
)
sin s,√

2 sin s,


with the curvatures

κ∗1 = κ∗2 =
sec s
2

and the Frenet frame as

T ∗ =

(
cos
(√

2s
)

√
2

,
sin
(√

2s
)

√
2

,
1√
2

)
,
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N∗ =
(
− sin

(√
2s
)
, cos

(√
2s
)
, 0
)
,

B∗ =

(
−
cos
(√

2s
)

√
2

,−
sin
(√

2s
)

√
2

,
1√
2

)
.

It can be easily obtained that N = −B∗ which implies that β is a Mannheim curve whose
Mannheim partner curve is β∗. Here β∗ is a general helix.
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Figure 3: The figure contains same graphics from two different aspects. The red graphic is β
(lying on the hyperboloid x2 + y2 − z2 = 4) and the black graphic is β∗ (lying on the sphere
x2 + y2 + z2 = 4 ) in Example 4. (For interpretation of the references to color in this figure legend, the
reader is referred to the free web version of this article.)

Now we give a method to obtain anti-Salkowski curve in E3. Let β : I ⊂ R → E3 be a
Mannheim curve except slant helices with the curvatures κ1, κ2 and the curve β∗ be aMannheim
partner curve of β with the curvatures κ∗1, κ∗2. Assume that β∗ is a anti-Salkowski curve. Then
from (2.18), for a nonzero constant c, we have

κ∗2 =
m1

√
κ21 + κ22
f ′ = c or cf ′ = m1

√
κ21 + κ22 =

cm1 (w
′ + vκ2)

√
κ21 + κ22

κ1
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which implies with (2.4) and (2.10) for v = 0 that

u = −
κ2
κ1(
κ2
κ1

)′ and w = − 1(
κ2
κ1

)′ = 1

c

∫
κ1ds.

So we can give the following corollary.

Corollary 2.5. Let β : I ⊂ R → E3 be a Mannheim curve except slant helices with the curvatures
κ1, κ2 and the curve β∗ be a Mannheim partner curve of β with the curvatures κ∗1, κ∗2 as

β∗ = β −
κ2
κ1(
κ2
κ1

)′T − 1(
κ2
κ1

)′B
where

κ2 = −cκ1

∫
1∫
κ1ds

ds

Then β∗ is an anti-Salkowski curve with κ∗2 = c where c ∈ R/ {0}.

Example 5. If we take κ1 = cos s, κ2 = cos s ln
(
cot
(
s
2

))
and c = 1, the condition of Corollary

2.5 is satisfied. So for the curve β with κ1 = cos s, κ2 = cos s ln
(
cot
(
s
2

))
, we obtain

β∗ = β − sin s ln
(
tan
(s
2

))
T + sin sB

which is an anti-Salkowski curve with κ∗2 = 1.

Similarly, we give a method to obtain Salkowski curve in E3. Let β : I ⊂ R → E3 be a
Mannheim curve except slant helices with the curvatures κ1, κ2 and the curve β∗ be aMannheim
partner curve of β with the curvatures κ∗1, κ∗2. Assume that β∗ is a Salkowski curve. Then from
(2.18), for a nonzero constant c, we have

κ∗1 =
−m2κ

2
1

(
κ2
κ1

)′
f ′
(
κ21 + κ22

) = c or f ′ = −
m2κ

2
1

(
κ2
κ1

)′
c
(
κ21 + κ22

) =
m1 (w

′ + vκ2)
√
κ21 + κ22

κ1
.

Then we find

w′ + vκ2 = −m1m2

c

(
κ2
κ1

)′ κ31(
κ21 + κ22

)3/2 = −m1m2

c

(
κ2
κ1

)′ 1(
1 +

(
κ2
κ1

)2)3/2

which implies with (2.4) and (2.10) for v = 0 that

w′ = −m1m2

c

(
κ2
κ1

)′ 1(
1 +

(
κ2
κ1

)2)3/2
, u = w

κ2
κ1

and 1 + u′ = w′κ2
κ1

.
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Then, we have

u′ = w′κ2
κ1

+ w

(
κ2
κ1

)′
and u′ = w′κ2

κ1
− 1,

which causes that

u = −
κ2
κ1(
κ2
κ1

)′ and w = − 1(
κ2
κ1

)′ = −m1m2

c

∫ (
κ2
κ1

)′ 1(
1 +

(
κ2
κ1

)2)3/2
ds.

Here

− 1(
κ2
κ1

)′ = −
m1m2

κ2
κ1

c

√
1 +

(
κ2
κ1

)2 + c0

or

1 =
m1m2

c

κ2
κ1

(
κ2
κ1

)′
√
1 +

(
κ2
κ1

)2 + c0

(
κ2
κ1

)′
.

Integrating both side with respect to s, we find

s+ c1 =
m1m2

c

√
1 +

(
κ2
κ1

)2

+ c0

(
κ2
κ1

)
.

So we can give the following corollary.

Corollary 2.6. Let β : I ⊂ R → E3 be a Mannheim curve except slant helices with the curvatures
κ1, κ2 and the curve β∗ be a Mannheim partner curve of β with the curvatures κ∗1, κ∗2 as

β∗ = β −
κ2
κ1(
κ2
κ1

)′T − 1(
κ2
κ1

)′B.

Then β∗ is a Salkowski curve with κ∗1 = c satisfying

s+ c1 =
m1m2

c

√
1 +

(
κ2
κ1

)2

+ c0

(
κ2
κ1

)
.

where c ∈ R/ {0} and c0, c1 ∈ R.

Example 6. If we take κ1 = s, κ2 = s
√
s2 − 1, c = m1 = m2 = 1 and c0 = c1 = 0, the

condition of Corollary 2.6 is satisfied. So for the curve β with κ1 = s and κ2 = s
√
s2 − 1, we

obtain

β∗ = β − s2 − 1

s
T −

√
s2 − 1

s
B

which is a Salkowski curve with κ∗1 = 1.
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In the following theorem, we characterize the Mannheim partner curves in E3. So we will
give the necesarry and sufficient conditions for a curve to be a Mannheim partner curve.

Theorem 2.7. Let β∗ : I∗ → E3 be a curve with the Frenet frame {T ∗, N∗, B∗} and the non-zero
curvatures κ∗1, κ∗2. Then β∗ is a Mannheim partner curve of a certain Mannheim curve if and only
if there exist differentiable functions a, b, c and λ satisfying

·
c+ bκ∗2 = 0 1 +

·
a− bκ∗1 ̸= 0

·
λ = −κ∗1

(
1 + λ2

)
(2.19)

aκ∗1 +
·
b− cκ∗2 = λ

(
1 +

·
a− bκ∗1

)
. (2.20)

Here ”·”means that derivative with respect to s∗.

Proof. Assume that β is a Mannheim curve parametrized by arc-length s with non-zero curva-
tures κ1, κ2 and the curve β∗ is theMannheim partner curve of the curve β parametrized by with
arc-length or pseudo arc s∗. Then, we can write the curve β as

β(s) = β(h(s∗)) = β∗(s∗) + a(s)T ∗ (s∗) + b (s)N∗(s∗) + c (s)B∗ (s∗) (2.21)

for all s∗ ∈ I∗ where a(s), b (s) and c (s) are differentiable functions on I∗. Differentiating (2.21)
with respect to s∗, we get

Th′ =
(
1 +

·
a− bκ∗1

)
T ∗ +

(
aκ∗1 +

·
b− cκ∗2

)
N∗ +

( ·
c+ bκ∗2

)
B∗. (2.22)

By taking the scalar product of (2.22) with B∗, we have

·
c+ bκ∗2 = 0. (2.23)

Substituting (2.23) in (2.22), we find

Th′ =
(
1 +

·
a− bκ∗1

)
T ∗ +

(
aκ∗1 +

·
b− cκ∗2

)
N∗. (2.24)

By taking the scalar product of (2.24) with itself, we obtain

(
h′
)2

=
(
1 +

·
a− bκ∗1

)2
+

(
aκ∗1 +

·
b− cκ∗2

)2

. (2.25)

If we denote

δ =
1 +

·
a− bκ∗1
h′

and γ =
aκ∗1 +

·
b− cκ∗2
h′

, (2.26)

we get
T = δT ∗ + γN∗. (2.27)
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Assume that δ = 0. Then we have T = γN∗. Differentiating it with respect to s∗, we find

h′κ1N = −γκ∗1T
∗ +

·
γN∗ + γκ∗2B

∗,

which implies that κ∗1 = 0. This is a contradiction. Thus δ ̸= 0. Similarly we can find γ ̸= 0. So
we obtain

1 +
·
a− bκ∗1 ̸= 0

and
aκ∗1 +

·
b− cκ∗2 = λ

(
1 +

·
a− bκ∗1

)
where λ = γ/δ. Differentiating (2.27) with respect to s∗, we find

h′κ1N =

(
·
δ − γκ∗1

)
T ∗ +

(
δκ∗1 +

·
γ
)
N∗ + γκ∗2B

∗. (2.28)

By taking the scalar product of (2.28) with B∗, we get

·
δ − γκ∗1 = 0 and δκ∗1 +

·
γ = 0,

which implies that
·
λ = −κ∗1

(
1 + λ2

)
.

Conversely, assume thatβ∗ is a curve parametrized by arc-length s∗with non-zero curvatures
κ∗1, κ

∗
2 and the conditions of (2.19) and (2.20) hold for differentiable functions a, b, c andλ. Then,

we can define a curve β as

β(s∗) = β∗(s∗) + a(s)T ∗ (s∗) + b (s)N∗(s∗) + c (s)B∗ (s∗) (2.29)

Differentiating (2.29) with respect to s∗, we find

dβ

ds∗
=
(
1 +

·
a− bκ∗1

)
T ∗ +

(
aκ∗1 +

·
b− cκ∗2

)
N∗. (2.30)

which leads to that

h′ =

√〈
dβ

ds∗
,
dβ

ds∗

〉
= m1

(
1 +

·
a− bκ∗1

)√
1 + λ2, (2.31)

wherem1 = sgn
(
1 +

·
a− bκ∗1

)
. Rewriting (2.30) , we obtain

T =
m1√
1 + λ2

(T ∗ + λN∗) , g (T, T ) = 1. (2.32)

Differentiating (2.32) with respect to s∗, we find

dT

ds
=

m1λκ
∗
2

h′
√
1 + λ2

B∗
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which cause that

κ1 =

∥∥∥∥dTds
∥∥∥∥ =

m2m3λκ
∗
2

h′
√
1 + λ2

, (2.33)

wherem2 = sgn (λ) andm3 = sgn (κ∗2). Now, we can findN as

N = m1m2m3B
∗, g (N,N) = 1. (2.34)

Now, we defineB as

B = T ×N =
m2m3√
1 + λ2

(λT ∗ −N∗) , g (B,B) = 1.

Lastly we find

κ2 =

〈
dN

ds
,B

〉
=

m1κ
∗
2

h′
√
1 + λ2

̸= 0. (2.35)

Then β∗ is a Mannheim partner curve of β.

If we take a = b = 0 in Theorem 2.7, we have the conditions of classical Mannheim partner
curves in the literature with

β(s∗) = β∗(s∗) + c (s)B∗(s∗).

Also we have
·
c = 0,

·
λ = −κ∗1

(
1 + λ2

)
, −cκ∗2 = λ.

So we get
dκ∗2
ds∗

=
κ∗1
c

(
1 + c2 (κ∗2)

2
)
.

Thus we can give the following corollary. The following corollary can be seen in [6].

Corollary 2.8. Let β∗ : I∗ → E3 be a curve with the Frenet frame {T ∗, N∗, B∗} and the non-zero
curvatures κ∗1, κ∗2. Then β∗ is a Mannheim partner curve of a certain Mannheim curve given by

β(s∗) = β∗(s∗) + c (s)B∗(s∗)

if and only if there exist real number c satisfying

dκ∗2
ds∗

=
κ∗1
c

(
1 + c2 (κ∗2)

2
)
.
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